Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model: mean-field analysis

We complement previous functional renormalization group (fRG) studies of the two-dimensional Hubbard model by mean-field calculations. The focus falls on Van Hove filling and the hopping amplitude t′/t=0.341. The fRG data suggest a quantum critical point (QCP) in this region and in its vicinity a si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Veschgini, Kambis (VerfasserIn) , Salmhofer, Manfred (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 13 December 2018
In: Physical review
Year: 2018, Jahrgang: 98, Heft: 23
ISSN:2469-9969
DOI:10.1103/PhysRevB.98.235131
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1103/PhysRevB.98.235131
Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevB.98.235131
Volltext
Verfasserangaben:Kambis Veschgini and Manfred Salmhofer

MARC

LEADER 00000caa a2200000 c 4500
001 1586046233
003 DE-627
005 20220815085335.0
007 cr uuu---uuuuu
008 190109s2018 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevB.98.235131  |2 doi 
035 |a (DE-627)1586046233 
035 |a (DE-576)516046233 
035 |a (DE-599)BSZ516046233 
035 |a (OCoLC)1341033193 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Veschgini, Kambis  |e VerfasserIn  |0 (DE-588)1052119220  |0 (DE-627)787846155  |0 (DE-576)407868798  |4 aut 
245 1 0 |a Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model  |b mean-field analysis  |c Kambis Veschgini and Manfred Salmhofer 
264 1 |c 13 December 2018 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 06.11.2020 
520 |a We complement previous functional renormalization group (fRG) studies of the two-dimensional Hubbard model by mean-field calculations. The focus falls on Van Hove filling and the hopping amplitude t′/t=0.341. The fRG data suggest a quantum critical point (QCP) in this region and in its vicinity a singular fermionic self-energy ImΣ(ω)/ω∼−|ω|−γ with γ≈0.26 [K-U. Giering and M. Salmhofer, Self-energy flows in the two-dimensional repulsive Hubbard model, Phys. Rev. B 86, 245122 (2012)]. Here we start a more detailed investigation of this QCP using a bosonic formulation for the effective action, where the bosons couple to the order parameter fields. To this end, we use the channel decomposition of the fermionic effective action developed in C. Husemann and M. Salmhofer, Efficient Parametrization of the Vertex Function, Omega-Scheme, and the (t, t')-Hubbard Model at Van Hove Filling, Phys. Rev. B 79, 195125 (2009), which allows us to perform Hubbard-Stratonovich transformations for all relevant order parameter fields at any given energy scale Ω. We stop the flow at a scale Ω where the correlations of the order parameter field are already pronounced, but the flow is still regular, and derive the effective boson theory. It contains d-wave superconducting, magnetic, and density-density interactions. We analyze the resulting phase diagram in the mean-field approximation. We show that the singular fermionic self-energy suppresses gap formation both in the superconducting and magnetic channel already at the mean-field level, thus rounding a first-order transition (without self-energy) to a quantum phase transition (with self-energy). We give a simple effective model that shows the generality of this effect. In the two-dimensional Hubbard model, the effective density-density interaction is peaked at a nonzero frequency, so that solving the mean-field equations already involves a functional equation instead of simply a matrix equation (on a technical level, similar to incommensurate phases). Within a certain approximation, we show that such an interaction leads to a short quasiparticle lifetime. 
700 1 |a Salmhofer, Manfred  |d 1964-  |e VerfasserIn  |0 (DE-588)12037868X  |0 (DE-627)080636934  |0 (DE-576)179574744  |4 aut 
773 0 8 |i Enthalten in  |t Physical review  |d Woodbury, NY : Inst., 2016  |g 98(2018,23) Artikel-Nummer 235131, 14 Seiten  |h Online-Ressource  |w (DE-627)845696750  |w (DE-600)2844160-6  |w (DE-576)454495846  |x 2469-9969  |7 nnas  |a Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model mean-field analysis 
773 1 8 |g volume:98  |g year:2018  |g number:23  |g extent:14  |a Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model mean-field analysis 
856 4 0 |u http://dx.doi.org/10.1103/PhysRevB.98.235131  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.aps.org/doi/10.1103/PhysRevB.98.235131  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190109 
993 |a Article 
994 |a 2018 
998 |g 12037868X  |a Salmhofer, Manfred  |m 12037868X:Salmhofer, Manfred  |d 130000  |d 130300  |e 130000PS12037868X  |e 130300PS12037868X  |k 0/130000/  |k 1/130000/130300/  |p 2  |y j 
998 |g 1052119220  |a Veschgini, Kambis  |m 1052119220:Veschgini, Kambis  |d 130000  |d 130300  |e 130000PV1052119220  |e 130300PV1052119220  |k 0/130000/  |k 1/130000/130300/  |p 1  |x j 
999 |a KXP-PPN1586046233  |e 303929993X 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"14 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["publ. by The American Institute of Physics"]},"id":{"issn":["2469-9969"],"eki":["845696750"],"zdb":["2844160-6"]},"origin":[{"dateIssuedDisp":"2016-","publisher":"Inst.","dateIssuedKey":"2016","publisherPlace":"Woodbury, NY"}],"recId":"845696750","language":["eng"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"American Institute of Physics","role":"isb"},{"display":"American Physical Society","roleDisplay":"Herausgebendes Organ","role":"isb"}],"disp":"Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model mean-field analysisPhysical review","type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"issue":"23","year":"2018","extent":"14","text":"98(2018,23) Artikel-Nummer 235131, 14 Seiten","volume":"98"},"titleAlt":[{"title":"Condensed matter and materials physics"}],"pubHistory":["Vol. 93, Iss. 1, January 2016-"],"title":[{"title_sort":"Physical review","title":"Physical review"}]}],"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"13 December 2018"}],"id":{"doi":["10.1103/PhysRevB.98.235131"],"eki":["1586046233"]},"name":{"displayForm":["Kambis Veschgini and Manfred Salmhofer"]},"note":["Gesehen am 06.11.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1586046233","language":["eng"],"title":[{"title_sort":"Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model","subtitle":"mean-field analysis","title":"Low-energy effective theory at a quantum critical point of the two-dimensional Hubbard model"}],"person":[{"given":"Kambis","family":"Veschgini","role":"aut","roleDisplay":"VerfasserIn","display":"Veschgini, Kambis"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Salmhofer, Manfred","given":"Manfred","family":"Salmhofer"}]} 
SRT |a VESCHGINIKLOWENERGYE1320