Induced spatial geometry from causal structure
Motivated by the Hawking-King-McCarthy-Malament (HKMM) theorem and the associated reconstruction of spacetime geometry from its causal structure $(M,\prec)$ and local volume element $\epsilon$, we define a one-parameter family of spatial distance functions on a Cauchy hypersurface $\Sigma$ using onl...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
17 Sep 2018
|
| In: |
Arxiv
|
| Online-Zugang: | Verlag, Volltext: http://arxiv.org/abs/1809.06192 |
| Verfasserangaben: | Astrid Eichhorn, Sumati Surya, and Fleur Versteegen |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 158622784X | ||
| 003 | DE-627 | ||
| 005 | 20220815090711.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190115s2018 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)158622784X | ||
| 035 | |a (DE-576)51622784X | ||
| 035 | |a (DE-599)BSZ51622784X | ||
| 035 | |a (OCoLC)1341033446 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Eichhorn, Astrid |d 1983- |e VerfasserIn |0 (DE-588)1137344369 |0 (DE-627)894438050 |0 (DE-576)432759603 |4 aut | |
| 245 | 1 | 0 | |a Induced spatial geometry from causal structure |c Astrid Eichhorn, Sumati Surya, and Fleur Versteegen |
| 264 | 1 | |c 17 Sep 2018 | |
| 300 | |a 41 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 24.11.2020 | ||
| 520 | |a Motivated by the Hawking-King-McCarthy-Malament (HKMM) theorem and the associated reconstruction of spacetime geometry from its causal structure $(M,\prec)$ and local volume element $\epsilon$, we define a one-parameter family of spatial distance functions on a Cauchy hypersurface $\Sigma$ using only $(M,\prec)$ and $\epsilon$. The parameter corresponds to a "mesoscale" cut-off which, when appropriately chosen, provides a distance function which approximates the induced spatial distance function to leading order. This admits a straightforward generalisation to the discrete analogue of a Cauchy hypersurface in a causal set. For causal sets which are approximated by continuum spacetimes, this distance function approaches the continuum induced distance when the mesoscale is much smaller than the scale of the extrinsic curvature of the hypersurface, but much larger than the discreteness scale. We verify these expectations by performing extensive numerical simulations of causal sets which are approximated by simple spacetime regions in 2 and 3 spacetime dimensions. | ||
| 650 | 4 | |a General Relativity and Quantum Cosmology | |
| 700 | 1 | |a Surya, Sumati |e VerfasserIn |0 (DE-588)1145055087 |0 (DE-627)1006484124 |0 (DE-576)495597333 |4 aut | |
| 700 | 1 | |a Versteegen, Fleur |d 1992- |e VerfasserIn |0 (DE-588)1150417579 |0 (DE-627)1010741225 |0 (DE-576)497053845 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2018) Artikel-Nummer 1809.06192, 41 Seiten |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Induced spatial geometry from causal structure |
| 773 | 1 | 8 | |g year:2018 |g extent:41 |a Induced spatial geometry from causal structure |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1809.06192 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20190115 | ||
| 993 | |a Article | ||
| 998 | |g 1150417579 |a Versteegen, Fleur |m 1150417579:Versteegen, Fleur |d 130000 |d 130300 |e 130000PV1150417579 |e 130300PV1150417579 |k 0/130000/ |k 1/130000/130300/ |p 3 |y j | ||
| 998 | |g 1137344369 |a Eichhorn, Astrid |m 1137344369:Eichhorn, Astrid |d 130000 |d 130300 |e 130000PE1137344369 |e 130300PE1137344369 |k 0/130000/ |k 1/130000/130300/ |p 1 |x j | ||
| 999 | |a KXP-PPN158622784X |e 3045389295 | ||
| BIB | |a Y | ||
| JSO | |a {"note":["Gesehen am 24.11.2020"],"name":{"displayForm":["Astrid Eichhorn, Sumati Surya, and Fleur Versteegen"]},"recId":"158622784X","origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"17 Sep 2018"}],"person":[{"display":"Eichhorn, Astrid","role":"aut","family":"Eichhorn","given":"Astrid"},{"display":"Surya, Sumati","role":"aut","family":"Surya","given":"Sumati"},{"role":"aut","display":"Versteegen, Fleur","given":"Fleur","family":"Versteegen"}],"language":["eng"],"title":[{"title_sort":"Induced spatial geometry from causal structure","title":"Induced spatial geometry from causal structure"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"language":["eng"],"disp":"Induced spatial geometry from causal structureArxiv","note":["Gesehen am 28.05.2024"],"type":{"media":"Online-Ressource","bibl":"edited-book"},"id":{"eki":["509006531"],"zdb":["2225896-6"]},"part":{"extent":"41","year":"2018","text":"(2018) Artikel-Nummer 1809.06192, 41 Seiten"},"pubHistory":["1991 -"],"origin":[{"dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedKey":"1991"}],"recId":"509006531","titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}]}],"physDesc":[{"extent":"41 S."}],"type":{"bibl":"chapter","media":"Online-Ressource"},"id":{"eki":["158622784X"]}} | ||
| SRT | |a EICHHORNASINDUCEDSPA1720 | ||