Quenches near Ising quantum criticality as a challenge for artificial neural networks
The near-critical unitary dynamics of quantum Ising spin chains in transversal and longitudinal magnetic fields is studied using an artificial neural network representation of the wave function. A focus is set on strong spatial correlations which build up in the system following a quench into the vi...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
31 July 2018
|
| In: |
Physical review
Year: 2018, Jahrgang: 98, Heft: 2 |
| ISSN: | 2469-9969 |
| DOI: | 10.1103/PhysRevB.98.024311 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1103/PhysRevB.98.024311 Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevB.98.024311 |
| Verfasserangaben: | Stefanie Czischek, Martin Gärttner, and Thomas Gasenzer |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1586323237 | ||
| 003 | DE-627 | ||
| 005 | 20220815091500.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190117s2018 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1103/PhysRevB.98.024311 |2 doi | |
| 035 | |a (DE-627)1586323237 | ||
| 035 | |a (DE-576)516323237 | ||
| 035 | |a (DE-599)BSZ516323237 | ||
| 035 | |a (OCoLC)1341033485 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Czischek, Stefanie |d 1990- |e VerfasserIn |0 (DE-588)1104851598 |0 (DE-627)862198690 |0 (DE-576)472919261 |4 aut | |
| 245 | 1 | 0 | |a Quenches near Ising quantum criticality as a challenge for artificial neural networks |c Stefanie Czischek, Martin Gärttner, and Thomas Gasenzer |
| 264 | 1 | |c 31 July 2018 | |
| 300 | |a 10 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 17.01.2019 | ||
| 520 | |a The near-critical unitary dynamics of quantum Ising spin chains in transversal and longitudinal magnetic fields is studied using an artificial neural network representation of the wave function. A focus is set on strong spatial correlations which build up in the system following a quench into the vicinity of the quantum critical point. We compare correlations obtained by optimizing the parameters of the network states with analytical solutions in integrable cases and time-dependent density matrix renormalization group (tDMRG) simulations, as well as with predictions from a semiclassical discrete truncated Wigner analysis. While the semiclassical approach yields quantitatively correct results only at very short times and near zero transverse fields, the neural-network representation is applicable in a much wider regime. However, for quenches close to the quantum critical point the representation becomes inefficient. For nonintegrable models we show that in regimes where tDMRG is limited to short times due to extensive entanglement growth, also the neural-network parametrization converges only at short times. | ||
| 700 | 1 | |a Gärttner, Martin |d 1985- |e VerfasserIn |0 (DE-588)1047469529 |0 (DE-627)778426076 |0 (DE-576)401083527 |4 aut | |
| 700 | 1 | |a Gasenzer, Thomas |e VerfasserIn |0 (DE-588)1019806370 |0 (DE-627)691023727 |0 (DE-576)358820294 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Physical review |d Woodbury, NY : Inst., 2016 |g 98(2018,02) Artikel-Nummer 024311, 10 Seiten |h Online-Ressource |w (DE-627)845696750 |w (DE-600)2844160-6 |w (DE-576)454495846 |x 2469-9969 |7 nnas |a Quenches near Ising quantum criticality as a challenge for artificial neural networks |
| 773 | 1 | 8 | |g volume:98 |g year:2018 |g number:2 |g extent:10 |a Quenches near Ising quantum criticality as a challenge for artificial neural networks |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1103/PhysRevB.98.024311 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://link.aps.org/doi/10.1103/PhysRevB.98.024311 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20190117 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 1019806370 |a Gasenzer, Thomas |m 1019806370:Gasenzer, Thomas |d 130000 |d 130700 |e 130000PG1019806370 |e 130700PG1019806370 |k 0/130000/ |k 1/130000/130700/ |p 3 |y j | ||
| 998 | |g 1047469529 |a Gärttner, Martin |m 1047469529:Gärttner, Martin |d 130000 |d 130700 |e 130000PG1047469529 |e 130700PG1047469529 |k 0/130000/ |k 1/130000/130700/ |p 2 | ||
| 998 | |g 1104851598 |a Czischek, Stefanie |m 1104851598:Czischek, Stefanie |d 130000 |d 130700 |e 130000PC1104851598 |e 130700PC1104851598 |k 0/130000/ |k 1/130000/130700/ |p 1 |x j | ||
| 999 | |a KXP-PPN1586323237 |e 3045958176 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"origin":[{"dateIssuedDisp":"31 July 2018","dateIssuedKey":"2018"}],"note":["Gesehen am 17.01.2019"],"recId":"1586323237","relHost":[{"titleAlt":[{"title":"Condensed matter and materials physics"}],"corporate":[{"role":"isb","display":"American Institute of Physics"},{"role":"isb","display":"American Physical Society"}],"part":{"issue":"2","volume":"98","extent":"10","text":"98(2018,02) Artikel-Nummer 024311, 10 Seiten","year":"2018"},"title":[{"title_sort":"Physical review","title":"Physical review"}],"physDesc":[{"extent":"Online-Ressource"}],"disp":"Quenches near Ising quantum criticality as a challenge for artificial neural networksPhysical review","type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"845696750","origin":[{"publisherPlace":"Woodbury, NY","publisher":"Inst.","dateIssuedDisp":"2016-","dateIssuedKey":"2016"}],"pubHistory":["Vol. 93, Iss. 1, January 2016-"],"id":{"issn":["2469-9969"],"zdb":["2844160-6"],"eki":["845696750"]},"name":{"displayForm":["publ. by The American Institute of Physics"]},"language":["eng"]}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"name":{"displayForm":["Stefanie Czischek, Martin Gärttner, and Thomas Gasenzer"]},"title":[{"title":"Quenches near Ising quantum criticality as a challenge for artificial neural networks","title_sort":"Quenches near Ising quantum criticality as a challenge for artificial neural networks"}],"person":[{"family":"Czischek","display":"Czischek, Stefanie","given":"Stefanie","role":"aut"},{"role":"aut","given":"Martin","display":"Gärttner, Martin","family":"Gärttner"},{"family":"Gasenzer","display":"Gasenzer, Thomas","given":"Thomas","role":"aut"}],"id":{"doi":["10.1103/PhysRevB.98.024311"],"eki":["1586323237"]},"physDesc":[{"extent":"10 S."}]} | ||
| SRT | |a CZISCHEKSTQUENCHESNE3120 | ||