Equilibration in fermionic systems

The time evolution of a finite fermion system towards statistical equilibrium is investigated using analytical solutions of a nonlinear partial differential equation that had been derived earlier from the Boltzmann collision term. The solutions of this fermionic diffusion equation are rederived in c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bartsch, Thomas (VerfasserIn) , Wolschin, Georg (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 6 Dec 2018
In: Arxiv

Online-Zugang:Verlag, Volltext: http://arxiv.org/abs/1806.04044
Volltext
Verfasserangaben:T. Bartsch, G. Wolschin
Beschreibung
Zusammenfassung:The time evolution of a finite fermion system towards statistical equilibrium is investigated using analytical solutions of a nonlinear partial differential equation that had been derived earlier from the Boltzmann collision term. The solutions of this fermionic diffusion equation are rederived in closed form, evaluated exactly for simplified initial conditions, and applied to hadron systems at low energies in the MeV-range, as well as to quark systems at relativistic energies in the TeV-range where antiparticle production is abundant. Conservation laws for particle number including created antiparticles, and for the energy are discussed.
Beschreibung:Gesehen am 22.01.2019
Beschreibung:Online Resource