Equilibration in fermionic systems

The time evolution of a finite fermion system towards local statistical equilibrium is investigated using analytical solutions of a nonlinear partial differential equation that had been derived earlier from the Boltzmann collision term. The solutions of this fermionic diffusion equation are rederive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bartsch, Thomas (VerfasserIn) , Wolschin, Georg (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2019
In: Annals of physics
Year: 2018, Jahrgang: 400, Pages: 21-36
DOI:10.1016/j.aop.2018.11.001
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1016/j.aop.2018.11.001
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0003491618302860
Volltext
Verfasserangaben:T. Bartsch, G. Wolschin
Beschreibung
Zusammenfassung:The time evolution of a finite fermion system towards local statistical equilibrium is investigated using analytical solutions of a nonlinear partial differential equation that had been derived earlier from the Boltzmann collision term. The solutions of this fermionic diffusion equation are rederived in closed form, evaluated exactly for simplified initial conditions, and applied to hadron systems at low energies in the MeV-range, as well as to quark systems at relativistic energies in the TeV-range where antiparticle production is abundant. Conservation laws for particle number including created antiparticles, and for the energy are discussed.
Beschreibung:Available online 8 November 2018
Gesehen am 05.02.2019
Beschreibung:Online Resource
DOI:10.1016/j.aop.2018.11.001