PT-symmetric quantum field theory in D dimensions
PT-symmetric quantum mechanics began with a study of the Hamiltonian $H=p^2+x^2(ix)^\varepsilon$. A surprising feature of this non-Hermitian Hamiltonian is that its eigenvalues are discrete, real, and positive when $\varepsilon\geq0$. This paper examines the corresponding quantum-field-theoretic Ham...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
30 Oct 2018
|
| In: |
Arxiv
|
| Online-Zugang: | Verlag, Volltext: http://arxiv.org/abs/1810.12479 |
| Verfasserangaben: | Carl M. Bender, Nima Hassanpour, S.P. Klevansky, and Sarben Sarkar |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1586383531 | ||
| 003 | DE-627 | ||
| 005 | 20220815091839.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190118s2018 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1586383531 | ||
| 035 | |a (DE-576)516383531 | ||
| 035 | |a (DE-599)BSZ516383531 | ||
| 035 | |a (OCoLC)1341033680 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Bender, Carl M. |d 1943- |e VerfasserIn |0 (DE-588)1175669601 |0 (DE-627)1046958488 |0 (DE-576)516383167 |4 aut | |
| 245 | 1 | 0 | |a PT-symmetric quantum field theory in D dimensions |c Carl M. Bender, Nima Hassanpour, S.P. Klevansky, and Sarben Sarkar |
| 264 | 1 | |c 30 Oct 2018 | |
| 300 | |a 8 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 06.11.2020 | ||
| 520 | |a PT-symmetric quantum mechanics began with a study of the Hamiltonian $H=p^2+x^2(ix)^\varepsilon$. A surprising feature of this non-Hermitian Hamiltonian is that its eigenvalues are discrete, real, and positive when $\varepsilon\geq0$. This paper examines the corresponding quantum-field-theoretic Hamiltonian $H=\frac{1}{2}(\nabla\phi)^2+\frac{1}{2}\phi^2(i\phi)^\varepsilon$ in $D$-dimensional spacetime, where $\phi$ is a pseudoscalar field. It is shown how to calculate the Green's functions as series in powers of $\varepsilon$ directly from the Euclidean partition function. Exact finite expressions for the vacuum energy density, all of the connected $n$-point Green's functions, and the renormalized mass to order $\varepsilon$ are derived for $0\leq D<2$. For $D\geq2$ the one-point Green's function and the renormalized mass are divergent, but perturbative renormalization can be performed. The remarkable spectral properties of PT-symmetric quantum mechanics appear to persist in PT-symmetric quantum field theory. | ||
| 650 | 4 | |a High Energy Physics - Theory | |
| 700 | 1 | |a Klevansky, Sandra Pamela |d 1959- |e VerfasserIn |0 (DE-588)1084353393 |0 (DE-627)848523520 |0 (DE-576)456294600 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2018) Artikel-Nummer 1810.12479, 8 Seiten |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a PT-symmetric quantum field theory in D dimensions |
| 773 | 1 | 8 | |g year:2018 |g extent:8 |a PT-symmetric quantum field theory in D dimensions |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1810.12479 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20190118 | ||
| 993 | |a Article | ||
| 998 | |g 1084353393 |a Klevansky, Sandra Pamela |m 1084353393:Klevansky, Sandra Pamela |d 130000 |d 700000 |d 741000 |d 741010 |e 130000PK1084353393 |e 700000PK1084353393 |e 741000PK1084353393 |e 741010PK1084353393 |k 0/130000/ |k 0/700000/ |k 1/700000/741000/ |k 2/700000/741000/741010/ |p 3 | ||
| 999 | |a KXP-PPN1586383531 |e 3046058772 | ||
| BIB | |a Y | ||
| JSO | |a {"person":[{"role":"aut","display":"Bender, Carl M.","roleDisplay":"VerfasserIn","given":"Carl M.","family":"Bender"},{"role":"aut","display":"Klevansky, Sandra Pamela","roleDisplay":"VerfasserIn","given":"Sandra Pamela","family":"Klevansky"}],"title":[{"title":"PT-symmetric quantum field theory in D dimensions","title_sort":"PT-symmetric quantum field theory in D dimensions"}],"language":["eng"],"recId":"1586383531","note":["Gesehen am 06.11.2020"],"type":{"bibl":"chapter","media":"Online-Ressource"},"name":{"displayForm":["Carl M. Bender, Nima Hassanpour, S.P. Klevansky, and Sarben Sarkar"]},"id":{"eki":["1586383531"]},"origin":[{"dateIssuedDisp":"30 Oct 2018","dateIssuedKey":"2018"}],"relHost":[{"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"year":"2018","extent":"8","text":"(2018) Artikel-Nummer 1810.12479, 8 Seiten"},"disp":"PT-symmetric quantum field theory in D dimensionsArxiv","note":["Gesehen am 28.05.2024"],"type":{"bibl":"edited-book","media":"Online-Ressource"},"recId":"509006531","language":["eng"],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]}}],"physDesc":[{"extent":"8 S."}]} | ||
| SRT | |a BENDERCARLPTSYMMETRI3020 | ||