PT-symmetric quantum field theory in D dimensions

PT-symmetric quantum mechanics began with a study of the Hamiltonian $H=p^2+x^2(ix)^\varepsilon$. A surprising feature of this non-Hermitian Hamiltonian is that its eigenvalues are discrete, real, and positive when $\varepsilon\geq0$. This paper examines the corresponding quantum-field-theoretic Ham...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bender, Carl M. (VerfasserIn) , Klevansky, Sandra Pamela (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 30 Oct 2018
In: Arxiv

Online-Zugang:Verlag, Volltext: http://arxiv.org/abs/1810.12479
Volltext
Verfasserangaben:Carl M. Bender, Nima Hassanpour, S.P. Klevansky, and Sarben Sarkar
Beschreibung
Zusammenfassung:PT-symmetric quantum mechanics began with a study of the Hamiltonian $H=p^2+x^2(ix)^\varepsilon$. A surprising feature of this non-Hermitian Hamiltonian is that its eigenvalues are discrete, real, and positive when $\varepsilon\geq0$. This paper examines the corresponding quantum-field-theoretic Hamiltonian $H=\frac{1}{2}(\nabla\phi)^2+\frac{1}{2}\phi^2(i\phi)^\varepsilon$ in $D$-dimensional spacetime, where $\phi$ is a pseudoscalar field. It is shown how to calculate the Green's functions as series in powers of $\varepsilon$ directly from the Euclidean partition function. Exact finite expressions for the vacuum energy density, all of the connected $n$-point Green's functions, and the renormalized mass to order $\varepsilon$ are derived for $0\leq D<2$. For $D\geq2$ the one-point Green's function and the renormalized mass are divergent, but perturbative renormalization can be performed. The remarkable spectral properties of PT-symmetric quantum mechanics appear to persist in PT-symmetric quantum field theory.
Beschreibung:Gesehen am 06.11.2020
Beschreibung:Online Resource