Two- and four-dimensional representations of the PT- and CPT -symmetric fermionic algebras

Fermionic systems differ from their bosonic counterparts, the main difference with regard to symmetry considerations being that T2=−1 for fermionic systems. In PT-symmetric quantum mechanics an operator has both PT and CPT adjoints. Fermionic operators η, which are quadratically nilpotent (η2=0), an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Beygi, Alireza (VerfasserIn) , Klevansky, Sandra Pamela (VerfasserIn) , Bender, Carl M. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 28 March 2018
In: Physical review
Year: 2018, Jahrgang: 97, Heft: 3
ISSN:2469-9934
DOI:10.1103/PhysRevA.97.032128
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1103/PhysRevA.97.032128
Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.97.032128
Volltext
Verfasserangaben:Alireza Beygi, S.P. Klevansky, and Carl M. Bender

MARC

LEADER 00000caa a2200000 c 4500
001 1586408623
003 DE-627
005 20220815092049.0
007 cr uuu---uuuuu
008 190121s2018 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevA.97.032128  |2 doi 
035 |a (DE-627)1586408623 
035 |a (DE-576)516408623 
035 |a (DE-599)BSZ516408623 
035 |a (OCoLC)1341033609 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Beygi, Alireza  |d 1989-  |e VerfasserIn  |0 (DE-588)1084806371  |0 (DE-627)848730607  |0 (DE-576)456851933  |4 aut 
245 1 0 |a Two- and four-dimensional representations of the PT- and CPT -symmetric fermionic algebras  |c Alireza Beygi, S.P. Klevansky, and Carl M. Bender 
264 1 |c 28 March 2018 
300 |a 6 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 05.11.2020 
520 |a Fermionic systems differ from their bosonic counterparts, the main difference with regard to symmetry considerations being that T2=−1 for fermionic systems. In PT-symmetric quantum mechanics an operator has both PT and CPT adjoints. Fermionic operators η, which are quadratically nilpotent (η2=0), and algebras with PT and CPT adjoints can be constructed. These algebras obey different anticommutation relations: ηηPT+ηPTη=−1, where ηPT is the PT adjoint of η, and ηηCPT+ηCPTη=1, where ηCPT is the CPT adjoint of η. This paper presents matrix representations for the operator η and its PT and CPT adjoints in two and four dimensions. A PT-symmetric second-quantized Hamiltonian modeled on quantum electrodynamics that describes a system of interacting fermions and bosons is constructed within this framework and is solved exactly. 
700 1 |a Klevansky, Sandra Pamela  |d 1959-  |e VerfasserIn  |0 (DE-588)1084353393  |0 (DE-627)848523520  |0 (DE-576)456294600  |4 aut 
700 1 |a Bender, Carl M.  |d 1943-  |e VerfasserIn  |0 (DE-588)1175669601  |0 (DE-627)1046958488  |0 (DE-576)516383167  |4 aut 
773 0 8 |i Enthalten in  |t Physical review  |d Woodbury, NY : Inst., 2016  |g 97(2018,3) Artikel-Nummer 032128, 6 Seiten  |h Online-Ressource  |w (DE-627)845695479  |w (DE-600)2844156-4  |w (DE-576)454495854  |x 2469-9934  |7 nnas  |a Two- and four-dimensional representations of the PT- and CPT -symmetric fermionic algebras 
773 1 8 |g volume:97  |g year:2018  |g number:3  |g extent:6  |a Two- and four-dimensional representations of the PT- and CPT -symmetric fermionic algebras 
856 4 0 |u http://dx.doi.org/10.1103/PhysRevA.97.032128  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.aps.org/doi/10.1103/PhysRevA.97.032128  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190121 
993 |a Article 
994 |a 2018 
998 |g 1084353393  |a Klevansky, Sandra Pamela  |m 1084353393:Klevansky, Sandra Pamela  |d 130000  |d 700000  |d 741000  |d 741010  |e 130000PK1084353393  |e 700000PK1084353393  |e 741000PK1084353393  |e 741010PK1084353393  |k 0/130000/  |k 0/700000/  |k 1/700000/741000/  |k 2/700000/741000/741010/  |p 2 
998 |g 1084806371  |a Beygi, Alireza  |m 1084806371:Beygi, Alireza  |d 130000  |e 130000PB1084806371  |k 0/130000/  |p 1  |x j 
999 |a KXP-PPN1586408623  |e 3046101309 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"6 S."}],"relHost":[{"title":[{"title_sort":"Physical review","title":"Physical review"}],"part":{"extent":"6","text":"97(2018,3) Artikel-Nummer 032128, 6 Seiten","volume":"97","issue":"3","year":"2018"},"titleAlt":[{"title":"Atomic, molecular, and optical physics and quantum information"}],"pubHistory":["Vol. 93, Iss. 1, January 2016-"],"recId":"845695479","language":["eng"],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"American Institute of Physics","role":"isb"},{"roleDisplay":"Herausgebendes Organ","display":"American Physical Society","role":"isb"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Two- and four-dimensional representations of the PT- and CPT -symmetric fermionic algebrasPhysical review","id":{"eki":["845695479"],"zdb":["2844156-4"],"issn":["2469-9934"]},"origin":[{"publisherPlace":"Woodbury, NY","dateIssuedKey":"2016","publisher":"Inst.","dateIssuedDisp":"2016-"}],"name":{"displayForm":["publ. by The American Institute of Physics"]},"physDesc":[{"extent":"Online-Ressource"}]}],"name":{"displayForm":["Alireza Beygi, S.P. Klevansky, and Carl M. Bender"]},"origin":[{"dateIssuedDisp":"28 March 2018","dateIssuedKey":"2018"}],"id":{"eki":["1586408623"],"doi":["10.1103/PhysRevA.97.032128"]},"note":["Gesehen am 05.11.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1586408623","language":["eng"],"person":[{"display":"Beygi, Alireza","roleDisplay":"VerfasserIn","role":"aut","family":"Beygi","given":"Alireza"},{"given":"Sandra Pamela","family":"Klevansky","role":"aut","display":"Klevansky, Sandra Pamela","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","display":"Bender, Carl M.","role":"aut","family":"Bender","given":"Carl M."}],"title":[{"title_sort":"Two- and four-dimensional representations of the PT- and CPT -symmetric fermionic algebras","title":"Two- and four-dimensional representations of the PT- and CPT -symmetric fermionic algebras"}]} 
SRT |a BEYGIALIRETWOANDFOUR2820