Estimating ergodization time of a chaotic many-particle system from a time reversal of equilibrium noise

We propose a method of estimating ergodization time of a chaotic many-particle system by monitoring equilibrium noise before and after time reversal of dynamics (Loschmidt echo). The ergodization time is defined as the characteristic time required to extract the largest Lyapunov exponent from a syst...

Full description

Saved in:
Bibliographic Details
Main Authors: Tarkhov, Andrei E. (Author) , Fine, Boris V. (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 8 Oct 2018
In: Arxiv

Online Access:Verlag, Volltext: http://arxiv.org/abs/1804.09732
Get full text
Author Notes:Andrei E. Tarkhov and Boris V. Fine

MARC

LEADER 00000caa a2200000 c 4500
001 1586411527
003 DE-627
005 20220815092132.0
007 cr uuu---uuuuu
008 190121s2018 xx |||||o 00| ||eng c
035 |a (DE-627)1586411527 
035 |a (DE-576)516411527 
035 |a (DE-599)BSZ516411527 
035 |a (OCoLC)1341033851 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Tarkhov, Andrei E.  |e VerfasserIn  |0 (DE-588)1162701331  |0 (DE-627)1026854296  |0 (DE-576)507570928  |4 aut 
245 1 0 |a Estimating ergodization time of a chaotic many-particle system from a time reversal of equilibrium noise  |c Andrei E. Tarkhov and Boris V. Fine 
264 1 |c 8 Oct 2018 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 05.11.2020 
520 |a We propose a method of estimating ergodization time of a chaotic many-particle system by monitoring equilibrium noise before and after time reversal of dynamics (Loschmidt echo). The ergodization time is defined as the characteristic time required to extract the largest Lyapunov exponent from a system's dynamics. We validate the method by numerical simulation of an array of coupled Bose-Einstein condensates in the regime describable by the discrete Gross-Pitaevskii equation. The quantity of interest for the method is a counterpart of out-of-time-order correlators (OTOCs) in the quantum regime. 
650 4 |a Physics - Atomic Physics 
650 4 |a Quantum Physics 
650 4 |a Condensed Matter - Statistical Mechanics 
650 4 |a Nonlinear Sciences - Chaotic Dynamics 
700 1 |a Fine, Boris V.  |d 1971-  |e VerfasserIn  |0 (DE-588)1094691372  |0 (DE-627)855109475  |0 (DE-576)462808289  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2018) Artikel-Nummer 1804.09732, 8 Seiten  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Estimating ergodization time of a chaotic many-particle system from a time reversal of equilibrium noise 
773 1 8 |g year:2018  |g extent:8  |a Estimating ergodization time of a chaotic many-particle system from a time reversal of equilibrium noise 
856 4 0 |u http://arxiv.org/abs/1804.09732  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190121 
993 |a Article 
998 |g 1094691372  |a Fine, Boris V.  |m 1094691372:Fine, Boris V.  |p 2  |y j 
999 |a KXP-PPN1586411527  |e 3046106645 
BIB |a Y 
JSO |a {"relHost":[{"note":["Gesehen am 28.05.2024"],"disp":"Estimating ergodization time of a chaotic many-particle system from a time reversal of equilibrium noiseArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"part":{"extent":"8","text":"(2018) Artikel-Nummer 1804.09732, 8 Seiten","year":"2018"},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]}}],"physDesc":[{"extent":"8 S."}],"id":{"eki":["1586411527"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"8 Oct 2018"}],"name":{"displayForm":["Andrei E. Tarkhov and Boris V. Fine"]},"language":["eng"],"recId":"1586411527","note":["Gesehen am 05.11.2020"],"type":{"media":"Online-Ressource","bibl":"chapter"},"title":[{"title":"Estimating ergodization time of a chaotic many-particle system from a time reversal of equilibrium noise","title_sort":"Estimating ergodization time of a chaotic many-particle system from a time reversal of equilibrium noise"}],"person":[{"display":"Tarkhov, Andrei E.","roleDisplay":"VerfasserIn","role":"aut","family":"Tarkhov","given":"Andrei E."},{"roleDisplay":"VerfasserIn","display":"Fine, Boris V.","role":"aut","family":"Fine","given":"Boris V."}]} 
SRT |a TARKHOVANDESTIMATING8201