Periodic Reeb orbits on prequantization bundles

In this paper, we prove that every graphical hypersurface in a prequantization bundle over a symplectic manifold M, pinched between two circle bundles whose ratio of radii is less than √2 carries either one short simple periodic orbit or carries at least cuplength (M)+1 simple periodic Reeb orbits....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Albers, Peter (VerfasserIn) , Gutt, Jean (VerfasserIn) , Hein, Doris (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2018
In: Journal of modern dynamics
Year: 2018, Jahrgang: 12, Pages: 123-150
ISSN:1930-532X
DOI:10.3934/jmd.2018005
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.3934/jmd.2018005
Verlag, Volltext: http://aimsciences.org/article/doi/10.3934/jmd.2018005
Volltext
Verfasserangaben:Peter Albers, Jean Gutt and Doris Hein
Beschreibung
Zusammenfassung:In this paper, we prove that every graphical hypersurface in a prequantization bundle over a symplectic manifold M, pinched between two circle bundles whose ratio of radii is less than √2 carries either one short simple periodic orbit or carries at least cuplength (M)+1 simple periodic Reeb orbits.
Beschreibung:Gesehen am 25.01.2019
Beschreibung:Online Resource
ISSN:1930-532X
DOI:10.3934/jmd.2018005