Introducing symplectic billiards

In this article we introduce a simple dynamical system called symplectic billiards. As opposed to usual/Birkhoff billiards, where length is the generating function, for symplectic billiards symplectic area is the generating function. We explore basic properties and exhibit several similarities, but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Albers, Peter (VerfasserIn) , Tabachnikov, Serge (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 June 2018
In: Advances in mathematics
Year: 2018, Jahrgang: 333, Pages: 822-867
ISSN:1090-2082
DOI:10.1016/j.aim.2018.05.037
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1016/j.aim.2018.05.037
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0001870818302196
Volltext
Verfasserangaben:Peter Albers, Serge Tabachnikov
Beschreibung
Zusammenfassung:In this article we introduce a simple dynamical system called symplectic billiards. As opposed to usual/Birkhoff billiards, where length is the generating function, for symplectic billiards symplectic area is the generating function. We explore basic properties and exhibit several similarities, but also differences of symplectic billiards to Birkhoff billiards.
Beschreibung:Gesehen am 25.01.2019
Beschreibung:Online Resource
ISSN:1090-2082
DOI:10.1016/j.aim.2018.05.037