Introducing symplectic billiards
In this article we introduce a simple dynamical system called symplectic billiards. As opposed to usual/Birkhoff billiards, where length is the generating function, for symplectic billiards symplectic area is the generating function. We explore basic properties and exhibit several similarities, but...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
15 June 2018
|
| In: |
Advances in mathematics
Year: 2018, Jahrgang: 333, Pages: 822-867 |
| ISSN: | 1090-2082 |
| DOI: | 10.1016/j.aim.2018.05.037 |
| Online-Zugang: | Resolving-System, Volltext: http://dx.doi.org/10.1016/j.aim.2018.05.037 Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0001870818302196 |
| Verfasserangaben: | Peter Albers, Serge Tabachnikov |
| Zusammenfassung: | In this article we introduce a simple dynamical system called symplectic billiards. As opposed to usual/Birkhoff billiards, where length is the generating function, for symplectic billiards symplectic area is the generating function. We explore basic properties and exhibit several similarities, but also differences of symplectic billiards to Birkhoff billiards. |
|---|---|
| Beschreibung: | Gesehen am 25.01.2019 |
| Beschreibung: | Online Resource |
| ISSN: | 1090-2082 |
| DOI: | 10.1016/j.aim.2018.05.037 |