On the numerical approximability of stable dynamical systems

This paper discusses the numerical approximation of stable dynamical systems of ordinary differential equations by general time-stepping methods. The traditional error analysis for this approximation yields estimates for the global discretization error in terms of the local truncations errors with c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rannacher, Rolf (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 26 April 2018
In: Vietnam journal of mathematics
Year: 2018, Jahrgang: 46, Heft: 4, Pages: 723-743
ISSN:2305-2228
DOI:10.1007/s10013-018-0297-8
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1007/s10013-018-0297-8
Verlag, Volltext: https://link.springer.com/article/10.1007/s10013-018-0297-8
Volltext
Verfasserangaben:Rolf Rannacher

MARC

LEADER 00000caa a2200000 c 4500
001 1586619942
003 DE-627
005 20220815094025.0
007 cr uuu---uuuuu
008 190128s2018 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10013-018-0297-8  |2 doi 
035 |a (DE-627)1586619942 
035 |a (DE-576)516619942 
035 |a (DE-599)BSZ516619942 
035 |a (OCoLC)1341034149 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Rannacher, Rolf  |d 1948-  |e VerfasserIn  |0 (DE-588)108664732  |0 (DE-627)642491224  |0 (DE-576)335024076  |4 aut 
245 1 0 |a On the numerical approximability of stable dynamical systems  |c Rolf Rannacher 
264 1 |c 26 April 2018 
300 |a 21 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.01.2019 
520 |a This paper discusses the numerical approximation of stable dynamical systems of ordinary differential equations by general time-stepping methods. The traditional error analysis for this approximation yields estimates for the global discretization error in terms of the local truncations errors with constants generally growing exponentially in time due to the use of a discrete Gronwall inequality. In special cases of monotone systems, global error estimates can be shown to hold uniformly in time provided that also the time stepping scheme possesses certain monotonicity properties. The standard example is the backward Euler method. However, for more general time-stepping schemes, this is not clear even in the monotone case. It is shown here how in general situations certain qualitative stability properties (exponential and quasi-exponential stability) of the solution to be approximated can be used for extending local error estimates to global ones holding uniformly in time. Further, the approximate solutions are likewise stable and, in the autonomous case, tend to equilibrium points. 
650 4 |a 34A34 
650 4 |a 37M05 
650 4 |a 65L05 
650 4 |a 65L06 
650 4 |a 65L20 
650 4 |a Discrete stability 
650 4 |a Exponential stability 
650 4 |a Global error estimates 
650 4 |a Quasi-exponential stability 
650 4 |a Stable dynamical systems 
650 4 |a Stationary limits 
650 4 |a Time-stepping schemes 
773 0 8 |i Enthalten in  |t Vietnam journal of mathematics  |d Singapore : Springer, 1999  |g 46(2018), 4, Seite 723-743  |h Online-Ressource  |w (DE-627)300183968  |w (DE-600)1481450-X  |w (DE-576)273877615  |x 2305-2228  |7 nnas  |a On the numerical approximability of stable dynamical systems 
773 1 8 |g volume:46  |g year:2018  |g number:4  |g pages:723-743  |g extent:21  |a On the numerical approximability of stable dynamical systems 
856 4 0 |u http://dx.doi.org/10.1007/s10013-018-0297-8  |x Resolving-System  |x Verlag  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s10013-018-0297-8  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190128 
993 |a Article 
994 |a 2018 
998 |g 108664732  |a Rannacher, Rolf  |m 108664732:Rannacher, Rolf  |d 110000  |d 110200  |d 110000  |d 110400  |d 700000  |d 708000  |e 110000PR108664732  |e 110200PR108664732  |e 110000PR108664732  |e 110400PR108664732  |e 700000PR108664732  |e 708000PR108664732  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j  |y j 
999 |a KXP-PPN1586619942  |e 3049298154 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.1007/s10013-018-0297-8"],"eki":["1586619942"]},"physDesc":[{"extent":"21 S."}],"note":["Gesehen am 28.01.2019"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"relHost":[{"titleAlt":[{"title":"VJM"}],"title":[{"title_sort":"Vietnam journal of mathematics","title":"Vietnam journal of mathematics","subtitle":"formerly Tạp chí Toán học (Journal of Mathematics)"}],"language":["eng"],"recId":"300183968","disp":"On the numerical approximability of stable dynamical systemsVietnam journal of mathematics","origin":[{"publisher":"Springer","dateIssuedDisp":"1999-","publisherPlace":"Singapore","dateIssuedKey":"1999"}],"pubHistory":["Nachgewiesen 1999 -"],"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"year":"2018","volume":"46","extent":"21","text":"46(2018), 4, Seite 723-743","issue":"4","pages":"723-743"},"id":{"eki":["300183968"],"zdb":["1481450-X"],"issn":["2305-2228"]},"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 26.02.13"]}],"language":["eng"],"person":[{"display":"Rannacher, Rolf","family":"Rannacher","role":"aut","given":"Rolf","roleDisplay":"VerfasserIn"}],"recId":"1586619942","origin":[{"dateIssuedDisp":"26 April 2018","dateIssuedKey":"2018"}],"title":[{"title_sort":"On the numerical approximability of stable dynamical systems","title":"On the numerical approximability of stable dynamical systems"}],"name":{"displayForm":["Rolf Rannacher"]}} 
SRT |a RANNACHERRONTHENUMER2620