Modulating neuronal competition dynamics in the dentate gyrus to rejuvenate aging memory circuits

Summary: The neural circuit mechanisms underlying the integration and functions of adult-born dentate granule cell (DGCs) are poorly understood. Adult-born DGCs are thought to compete with mature DGCs for inputs to integrate. Transient genetic overexpression of a negative regulator of dendritic spin...

Full description

Saved in:
Bibliographic Details
Main Authors: McAvoy, Kathleen M. (Author) , Bartsch, Dusan (Author)
Format: Article (Journal)
Language:English
Published: September 1, 2016
In: Neuron
Year: 2016, Volume: 91, Issue: 6, Pages: 1356-1373
ISSN:1097-4199
DOI:10.1016/j.neuron.2016.08.009
Online Access:Verlag, Volltext: http://dx.doi.org/10.1016/j.neuron.2016.08.009
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0896627316305013
Get full text
Author Notes:Kathleen M. McAvoy, Kimberly N. Scobie, Stefan Berger, Craig Russo, Nannan Guo, Pakanat Decharatanachart, Hugo Vega-Ramirez, Sam Miake-Lye, Michael Whalen, Mark Nelson, Matteo Bergami, Dusan Bartsch, Rene Hen, Benedikt Berninger, and Amar Sahay
Description
Summary:Summary: The neural circuit mechanisms underlying the integration and functions of adult-born dentate granule cell (DGCs) are poorly understood. Adult-born DGCs are thought to compete with mature DGCs for inputs to integrate. Transient genetic overexpression of a negative regulator of dendritic spines, Kruppel-like factor 9 (Klf9), in mature DGCs enhanced integration of adult-born DGCs and increased NSC activation. Reversal of Klf9 overexpression in mature DGCs restored spines and activity and reset neuronal competition dynamics and NSC activation, leaving the DG modified by a functionally integrated, expanded cohort of age-matched adult-born DGCs. Spine elimination by inducible deletion of Rac1 in mature DGCs increased survival of adult-born DGCs without affecting proliferation or DGC activity. Enhanced integration of adult-born DGCs transiently reorganized adult-born DGC local afferent connectivity and promoted global remapping in the DG. Rejuvenation of the DG by enhancing integration of adult-born DGCs in adulthood, middle age, and aging enhanced memory precision.
Item Description:Gesehen am 04.02.2019
Physical Description:Online Resource
ISSN:1097-4199
DOI:10.1016/j.neuron.2016.08.009