A p-adic L-function with canonical motivic periods for families of modular forms
Gespeichert in:
MARC
| LEADER | 00000cam a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1587332787 | ||
| 003 | DE-627 | ||
| 005 | 20240824163638.0 | ||
| 007 | tu | ||
| 008 | 190206s2017 xx ||||| m 00| ||eng c | ||
| 035 | |a (DE-627)1587332787 | ||
| 035 | |a (DE-576)517332787 | ||
| 035 | |a (DE-599)BSZ517332787 | ||
| 035 | |a (OCoLC)1135316918 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 082 | 0 | |a 514 |q SEPA | |
| 084 | |a 27 |2 sdnb | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Fütterer, Michael |d 1989- |e VerfasserIn |0 (DE-588)1176662155 |0 (DE-627)1047627906 |0 (DE-576)516734431 |4 aut | |
| 245 | 1 | 2 | |a A p-adic L-function with canonical motivic periods for families of modular forms |c vorgelegt von Diplom-Mathematiker Michael Fütterer ; Betreuer: Prof. Dr. Otmar Venjakob, 2. Gutachter: Prof. ad. Antonio Lei |
| 264 | 1 | |a Heidelberg |c 9. August 2017 | |
| 300 | |a xxii, 245 Seiten | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
| 338 | |a Band |b nc |2 rdacarrier | ||
| 502 | |b Dissertation |c Ruprecht-Karls-Universität Heidelberg |d 2017 | ||
| 546 | |a Mit einer Zusammenfassung in englischer und deutscher Sprache | ||
| 583 | 1 | |a Archivierung/Langzeitarchivierung gewährleistet |f DISS |x XA-DE-BW |2 pdager |5 DE-16 | |
| 655 | 7 | |a Hochschulschrift |0 (DE-588)4113937-9 |0 (DE-627)105825778 |0 (DE-576)209480580 |2 gnd-content | |
| 700 | 1 | |a Venjakob, Otmar |d 1969- |e AkademischeR BetreuerIn |0 (DE-588)1052565972 |0 (DE-627)788650297 |0 (DE-576)408347740 |4 dgs | |
| 710 | 2 | |a Universität Heidelberg |e Grad-verleihende Institution |0 (DE-588)2024349-2 |0 (DE-627)102161488 |0 (DE-576)191769517 |4 dgg | |
| 751 | |a Heidelberg |0 (DE-588)4023996-2 |0 (DE-627)106300814 |0 (DE-576)208952578 |4 uvp | ||
| 776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |a Fütterer, Michael, 1989 - |t A p-adic L-function with canonical motivic periods for families of modular forms |d Heidelberg, 2019 |h 1 Online-Ressource (xv, 269 Seiten) |w (DE-627)1653764333 |w (DE-576)516733311 |
| 951 | |a BO | ||
| 992 | |a 20190206 | ||
| 993 | |a Thesis | ||
| 998 | |g 1176662155 |a Fütterer, Michael |m 1176662155:Fütterer, Michael |d 110000 |d 110001 |e 110000PF1176662155 |e 110001PF1176662155 |k 0/110000/ |k 1/110000/110001/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1587332787 |e 3055138813 | ||
| BIB | |a Y | ||
| JSO | |a {"title":[{"title_sort":"p-adic L-function with canonical motivic periods for families of modular forms","title":"A p-adic L-function with canonical motivic periods for families of modular forms"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Fütterer, Michael","given":"Michael","family":"Fütterer"},{"family":"Venjakob","given":"Otmar","display":"Venjakob, Otmar","roleDisplay":"AkademischeR BetreuerIn","role":"dgs"}],"noteThesis":["Dissertation. - Ruprecht-Karls-Universität Heidelberg. - 2017"],"type":{"bibl":"thesis"},"recId":"1587332787","language":["eng"],"corporate":[{"role":"dgg","display":"Universität Heidelberg","roleDisplay":"Grad-verleihende Institution"}],"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"9. August 2017","publisherPlace":"Heidelberg"}],"id":{"eki":["1587332787"]},"name":{"displayForm":["vorgelegt von Diplom-Mathematiker Michael Fütterer ; Betreuer: Prof. Dr. Otmar Venjakob, 2. Gutachter: Prof. ad. Antonio Lei"]},"physDesc":[{"extent":"xxii, 245 Seiten"}]} | ||
| SRT | |a FUETTERERMPADICLFUNC9201 | ||