Boundary maps and maximal representations on infinite dimensional Hermitian symmetric spaces

We define a Toledo number for actions of surface groups and complex hyperbolic lattices on infinite dimensional Hermitian symmetric spaces, which allows us to define maximal representations. When the target is not of tube type we show that there cannot be Zariski-dense maximal representations, and w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Duchesne, Bruno (VerfasserIn) , Lécureux, Jean (VerfasserIn) , Pozzetti, Maria Beatrice (VerfasserIn)
Dokumenttyp: Article (Journal) Chapter/Article
Sprache:Englisch
Veröffentlicht: 24 Oct 2018
In: Arxiv

Online-Zugang:Volltext
Volltext
Verfasserangaben:Bruno Duchesne, Jean Lécureux, and Maria Beatrice Pozzetti
Beschreibung
Zusammenfassung:We define a Toledo number for actions of surface groups and complex hyperbolic lattices on infinite dimensional Hermitian symmetric spaces, which allows us to define maximal representations. When the target is not of tube type we show that there cannot be Zariski-dense maximal representations, and whenever the existence of a boundary map can be guaranteed, the representation preserves a finite dimensional totally geodesic subspace on which the action is maximal. In the opposite direction we construct examples of geometrically dense maximal representation in the infinite dimensional Hermitian symmetric space of tube type and finite rank. Our approach is based on the study of boundary maps, that we are able to construct in low ranks or under some suitable Zariski-density assumption, circumventing the lack of local compactness in the infinite dimensional setting.
Beschreibung:Last revised 8 Nov 2018 (v2)
Gesehen am 11.02.2019
Beschreibung:Online Resource