Cuplength estimates in Morse cohomology

The main goal of this paper is to give a unified treatment to many known cuplength estimates with a view towards Floer theory. As the base case, we prove that for C^0-perturbations of a function which is Morse-Bott along a closed submanifold, the number of critical points is bounded below in terms o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Albers, Peter (VerfasserIn) , Hein, Doris (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 18 June 2015
In: Journal of topology and analysis
Year: 2015, Jahrgang: 08, Heft: 02, Pages: 243-272
ISSN:1793-7167
DOI:10.1142/S1793525316500102
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1142/S1793525316500102
Verlag, Volltext: https://www.worldscientific.com/doi/abs/10.1142/S1793525316500102
Volltext
Verfasserangaben:Peter Albers and Doris Hein

MARC

LEADER 00000caa a22000002c 4500
001 1587737159
003 DE-627
005 20220815104230.0
007 cr uuu---uuuuu
008 190218s2015 xx |||||o 00| ||eng c
024 7 |a 10.1142/S1793525316500102  |2 doi 
035 |a (DE-627)1587737159 
035 |a (DE-576)517737159 
035 |a (DE-599)BSZ517737159 
035 |a (OCoLC)1341038459 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Albers, Peter  |d 1975-  |e VerfasserIn  |0 (DE-588)129903817  |0 (DE-627)483350362  |0 (DE-576)188953140  |4 aut 
245 1 0 |a Cuplength estimates in Morse cohomology  |c Peter Albers and Doris Hein 
264 1 |c 18 June 2015 
300 |a 30 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.02.2019 
520 |a The main goal of this paper is to give a unified treatment to many known cuplength estimates with a view towards Floer theory. As the base case, we prove that for C^0-perturbations of a function which is Morse-Bott along a closed submanifold, the number of critical points is bounded below in terms of the cuplength of that critical submanifold. As we work with rather general assumptions the proof also applies in a variety of Floer settings. For example, this proves lower bounds (some of which were known) for the number of fixed points of Hamiltonian diffeomorphisms, Hamiltonian chords for Lagrangian submanifolds, translated points of contactomorphisms, and solutions to a Dirac-type equation. 
700 1 |a Hein, Doris  |e VerfasserIn  |0 (DE-588)1176233432  |0 (DE-627)1047387425  |0 (DE-576)516593609  |4 aut 
773 0 8 |i Enthalten in  |t Journal of topology and analysis  |d Singapore : World Scientific Publ., 2009  |g 08(2015), 02, Seite 243-272  |h Online-Ressource  |w (DE-627)609403168  |w (DE-600)2515442-4  |w (DE-576)397917252  |x 1793-7167  |7 nnas  |a Cuplength estimates in Morse cohomology 
773 1 8 |g volume:08  |g year:2015  |g number:02  |g pages:243-272  |g extent:30  |a Cuplength estimates in Morse cohomology 
856 4 0 |u http://dx.doi.org/10.1142/S1793525316500102  |x Resolving-System  |x Verlag  |3 Volltext 
856 4 0 |u https://www.worldscientific.com/doi/abs/10.1142/S1793525316500102  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190218 
993 |a Article 
994 |a 2015 
998 |g 129903817  |a Albers, Peter  |m 129903817:Albers, Peter  |p 1  |x j 
999 |a KXP-PPN1587737159  |e 3056110874 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"recId":"1587737159","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 28.02.2019"],"person":[{"role":"aut","display":"Albers, Peter","roleDisplay":"VerfasserIn","given":"Peter","family":"Albers"},{"family":"Hein","given":"Doris","roleDisplay":"VerfasserIn","display":"Hein, Doris","role":"aut"}],"title":[{"title":"Cuplength estimates in Morse cohomology","title_sort":"Cuplength estimates in Morse cohomology"}],"relHost":[{"origin":[{"publisherPlace":"Singapore","dateIssuedDisp":"2009-","dateIssuedKey":"2009","publisher":"World Scientific Publ."}],"id":{"zdb":["2515442-4"],"eki":["609403168"],"issn":["1793-7167"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Journal of topology and analysis","subtitle":"JTA","title_sort":"Journal of topology and analysis"}],"pubHistory":["1.2009 -"],"titleAlt":[{"title":"JTA"}],"part":{"extent":"30","volume":"08","text":"08(2015), 02, Seite 243-272","issue":"02","pages":"243-272","year":"2015"},"note":["Gesehen am 23.02.19"],"disp":"Cuplength estimates in Morse cohomologyJournal of topology and analysis","type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"609403168"}],"physDesc":[{"extent":"30 S."}],"name":{"displayForm":["Peter Albers and Doris Hein"]},"id":{"doi":["10.1142/S1793525316500102"],"eki":["1587737159"]},"origin":[{"dateIssuedDisp":"18 June 2015","dateIssuedKey":"2015"}]} 
SRT |a ALBERSPETECUPLENGTHE1820