Cuplength estimates in Morse cohomology
The main goal of this paper is to give a unified treatment to many known cuplength estimates with a view towards Floer theory. As the base case, we prove that for C^0-perturbations of a function which is Morse-Bott along a closed submanifold, the number of critical points is bounded below in terms o...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
18 June 2015
|
| In: |
Journal of topology and analysis
Year: 2015, Jahrgang: 08, Heft: 02, Pages: 243-272 |
| ISSN: | 1793-7167 |
| DOI: | 10.1142/S1793525316500102 |
| Online-Zugang: | Resolving-System, Volltext: http://dx.doi.org/10.1142/S1793525316500102 Verlag, Volltext: https://www.worldscientific.com/doi/abs/10.1142/S1793525316500102 |
| Verfasserangaben: | Peter Albers and Doris Hein |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1587737159 | ||
| 003 | DE-627 | ||
| 005 | 20220815104230.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190218s2015 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1142/S1793525316500102 |2 doi | |
| 035 | |a (DE-627)1587737159 | ||
| 035 | |a (DE-576)517737159 | ||
| 035 | |a (DE-599)BSZ517737159 | ||
| 035 | |a (OCoLC)1341038459 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Albers, Peter |d 1975- |e VerfasserIn |0 (DE-588)129903817 |0 (DE-627)483350362 |0 (DE-576)188953140 |4 aut | |
| 245 | 1 | 0 | |a Cuplength estimates in Morse cohomology |c Peter Albers and Doris Hein |
| 264 | 1 | |c 18 June 2015 | |
| 300 | |a 30 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 28.02.2019 | ||
| 520 | |a The main goal of this paper is to give a unified treatment to many known cuplength estimates with a view towards Floer theory. As the base case, we prove that for C^0-perturbations of a function which is Morse-Bott along a closed submanifold, the number of critical points is bounded below in terms of the cuplength of that critical submanifold. As we work with rather general assumptions the proof also applies in a variety of Floer settings. For example, this proves lower bounds (some of which were known) for the number of fixed points of Hamiltonian diffeomorphisms, Hamiltonian chords for Lagrangian submanifolds, translated points of contactomorphisms, and solutions to a Dirac-type equation. | ||
| 700 | 1 | |a Hein, Doris |e VerfasserIn |0 (DE-588)1176233432 |0 (DE-627)1047387425 |0 (DE-576)516593609 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of topology and analysis |d Singapore : World Scientific Publ., 2009 |g 08(2015), 02, Seite 243-272 |h Online-Ressource |w (DE-627)609403168 |w (DE-600)2515442-4 |w (DE-576)397917252 |x 1793-7167 |7 nnas |a Cuplength estimates in Morse cohomology |
| 773 | 1 | 8 | |g volume:08 |g year:2015 |g number:02 |g pages:243-272 |g extent:30 |a Cuplength estimates in Morse cohomology |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1142/S1793525316500102 |x Resolving-System |x Verlag |3 Volltext |
| 856 | 4 | 0 | |u https://www.worldscientific.com/doi/abs/10.1142/S1793525316500102 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20190218 | ||
| 993 | |a Article | ||
| 994 | |a 2015 | ||
| 998 | |g 129903817 |a Albers, Peter |m 129903817:Albers, Peter |p 1 |x j | ||
| 999 | |a KXP-PPN1587737159 |e 3056110874 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"recId":"1587737159","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 28.02.2019"],"person":[{"role":"aut","display":"Albers, Peter","roleDisplay":"VerfasserIn","given":"Peter","family":"Albers"},{"family":"Hein","given":"Doris","roleDisplay":"VerfasserIn","display":"Hein, Doris","role":"aut"}],"title":[{"title":"Cuplength estimates in Morse cohomology","title_sort":"Cuplength estimates in Morse cohomology"}],"relHost":[{"origin":[{"publisherPlace":"Singapore","dateIssuedDisp":"2009-","dateIssuedKey":"2009","publisher":"World Scientific Publ."}],"id":{"zdb":["2515442-4"],"eki":["609403168"],"issn":["1793-7167"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Journal of topology and analysis","subtitle":"JTA","title_sort":"Journal of topology and analysis"}],"pubHistory":["1.2009 -"],"titleAlt":[{"title":"JTA"}],"part":{"extent":"30","volume":"08","text":"08(2015), 02, Seite 243-272","issue":"02","pages":"243-272","year":"2015"},"note":["Gesehen am 23.02.19"],"disp":"Cuplength estimates in Morse cohomologyJournal of topology and analysis","type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"609403168"}],"physDesc":[{"extent":"30 S."}],"name":{"displayForm":["Peter Albers and Doris Hein"]},"id":{"doi":["10.1142/S1793525316500102"],"eki":["1587737159"]},"origin":[{"dateIssuedDisp":"18 June 2015","dateIssuedKey":"2015"}]} | ||
| SRT | |a ALBERSPETECUPLENGTHE1820 | ||