The Conley-Zehnder indices of the rotating Kepler problem

We determine the Conley-Zehnder indices of all periodic orbits of the rotating Kepler problem for energies below the critical Jacobi energy. Consequently, we show the universal cover of the bounded component of the regularized energy hypersurface is dynamically convex. Moreover, in the universal cov...

Full description

Saved in:
Bibliographic Details
Main Author: Albers, Peter (Author)
Format: Article (Journal)
Language:English
Published: 2013
In: Mathematical proceedings of the Cambridge Philosophical Society
Year: 2012, Volume: 154, Issue: 2, Pages: 243-260
ISSN:1469-8064
DOI:10.1017/S0305004112000515
Online Access:Resolving-System, Volltext: http://dx.doi.org/10.1017/S0305004112000515
Verlag, Volltext: https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/conleyzehnder-indices-of-the-rotating-kepler-problem/88431653142F233C0141F36C92C5DD91
Get full text
Author Notes:by Peter Albers, Joel W. Fish, Urs Frauenfelder and Otto van Koert
Description
Summary:We determine the Conley-Zehnder indices of all periodic orbits of the rotating Kepler problem for energies below the critical Jacobi energy. Consequently, we show the universal cover of the bounded component of the regularized energy hypersurface is dynamically convex. Moreover, in the universal cover there is always precisely one periodic orbit with Conley-Zehnder index 3, namely the lift of the doubly covered retrograde circular orbit.
Item Description:First published online 3 October 2012
Gesehen am 18.02.2019
Physical Description:Online Resource
ISSN:1469-8064
DOI:10.1017/S0305004112000515