Self-adaptive large neighborhood search algorithm for parallel machine scheduling problems

A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with multiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limit...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Pei (Author) , Reinelt, Gerhard (Author) , Tan, Yuejin (Author)
Format: Article (Journal)
Language:English
Published: 16 May 2012
In: Journal of systems engineering and electronics
Year: 2012, Volume: 23, Issue: 2, Pages: 208-215
Online Access: Get full text
Author Notes:P. Wang, G. Reinelt, Y. Tan

MARC

LEADER 00000caa a2200000 c 4500
001 1587790238
003 DE-627
005 20220815105222.0
007 cr uuu---uuuuu
008 190219s2012 xx |||||o 00| ||eng c
024 7 |a 10.1109/JSEE.2012.00027  |2 doi 
035 |a (DE-627)1587790238 
035 |a (DE-576)517790238 
035 |a (DE-599)BSZ517790238 
035 |a (OCoLC)1341038695 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Wang, Pei  |e VerfasserIn  |0 (DE-588)1015541798  |0 (DE-627)668914084  |0 (DE-576)350781508  |4 aut 
245 1 0 |a Self-adaptive large neighborhood search algorithm for parallel machine scheduling problems  |c P. Wang, G. Reinelt, Y. Tan 
264 1 |c 16 May 2012 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 19.02.2019 
520 |a A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with multiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in-first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re-optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis. 
650 4 |a machine learning 
650 4 |a Nearest neighbor searches 
650 4 |a non-identical parallel machine scheduling problem with multiple time windows (NPMSPMTW) 
650 4 |a oversubscribed 
650 4 |a Parallel machines 
650 4 |a Satellites 
650 4 |a Schedules 
650 4 |a Scheduling 
650 4 |a Search problems 
650 4 |a self-adaptive large neighborhood search (SALNS) 
650 4 |a Temperature measurement 
700 1 |a Reinelt, Gerhard  |e VerfasserIn  |0 (DE-588)101987113X  |0 (DE-627)691042861  |0 (DE-576)358936187  |4 aut 
700 1 |a Tan, Yuejin  |e VerfasserIn  |0 (DE-588)117846024X  |0 (DE-627)1049388526  |0 (DE-576)517789779  |4 aut 
773 0 8 |i Enthalten in  |t Journal of systems engineering and electronics  |d [New York, NY] : IEEE, 1990  |g 23(2012), 2, Seite 208-215  |h Online-Ressource  |w (DE-627)511639155  |w (DE-600)2233722-2  |w (DE-576)271586362  |7 nnas  |a Self-adaptive large neighborhood search algorithm for parallel machine scheduling problems 
773 1 8 |g volume:23  |g year:2012  |g number:2  |g pages:208-215  |g extent:8  |a Self-adaptive large neighborhood search algorithm for parallel machine scheduling problems 
951 |a AR 
992 |a 20190219 
993 |a Article 
994 |a 2012 
998 |g 101987113X  |a Reinelt, Gerhard  |m 101987113X:Reinelt, Gerhard  |d 110000  |d 110300  |e 110000PR101987113X  |e 110300PR101987113X  |k 0/110000/  |k 1/110000/110300/  |p 2 
999 |a KXP-PPN1587790238  |e 3056189322 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title":"Self-adaptive large neighborhood search algorithm for parallel machine scheduling problems","title_sort":"Self-adaptive large neighborhood search algorithm for parallel machine scheduling problems"}],"person":[{"display":"Wang, Pei","roleDisplay":"VerfasserIn","role":"aut","family":"Wang","given":"Pei"},{"display":"Reinelt, Gerhard","roleDisplay":"VerfasserIn","role":"aut","family":"Reinelt","given":"Gerhard"},{"role":"aut","display":"Tan, Yuejin","roleDisplay":"VerfasserIn","given":"Yuejin","family":"Tan"}],"note":["Gesehen am 19.02.2019"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"recId":"1587790238","origin":[{"dateIssuedKey":"2012","dateIssuedDisp":"16 May 2012"}],"id":{"doi":["10.1109/JSEE.2012.00027"],"eki":["1587790238"]},"name":{"displayForm":["P. Wang, G. Reinelt, Y. Tan"]},"physDesc":[{"extent":"8 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["The Second Academy of China Aerospace Science & Industry Cooperation"]},"origin":[{"dateIssuedKey":"1990","publisher":"IEEE ; Elsevier","dateIssuedDisp":"1990-","publisherPlace":"[New York, NY] ; Amsterdam [u.a.]"}],"id":{"zdb":["2233722-2"],"eki":["511639155"],"doi":["10.23919/JSEE.5971804"]},"disp":"Self-adaptive large neighborhood search algorithm for parallel machine scheduling problemsJournal of systems engineering and electronics","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["China-Zeitschriften-Code: CN11-3018","CAJ control code: XTGJ","Gesehen am 20.03.2023","Weipu Journal ID: 85918X"],"recId":"511639155","language":["eng"],"pubHistory":["Vol. 1, no. 1 (summer 1990)-"],"titleAlt":[{"title":"Chinese journal of systems engineering and electronics"}],"part":{"extent":"8","volume":"23","text":"23(2012), 2, Seite 208-215","pages":"208-215","issue":"2","year":"2012"},"title":[{"title":"Journal of systems engineering and electronics","title_sort":"Journal of systems engineering and electronics"}]}]} 
SRT |a WANGPEIREISELFADAPTI1620