Ramanujan identities of higher degree
We use techniques regarding generalized Dirichlet series developed in Franke (Ramanujan J 46(1):91-102, 2018) to obtain formulas for a wide class of L-functions at rational arguments. It is shown that these values are related to special functions on the upper half plane which possess similar propert...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
1 October 2018
|
| In: |
Research in number theory
Year: 2018, Jahrgang: 4, Heft: 4, Pages: 42 |
| ISSN: | 2363-9555 |
| DOI: | 10.1007/s40993-018-0135-9 |
| Online-Zugang: | Resolving-System, Volltext: http://dx.doi.org/10.1007/s40993-018-0135-9 Verlag, Volltext: https://link.springer.com/article/10.1007/s40993-018-0135-9 |
| Verfasserangaben: | J. Franke |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1587811650 | ||
| 003 | DE-627 | ||
| 005 | 20220815105709.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190219s2018 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s40993-018-0135-9 |2 doi | |
| 035 | |a (DE-627)1587811650 | ||
| 035 | |a (DE-576)517811650 | ||
| 035 | |a (DE-599)BSZ517811650 | ||
| 035 | |a (OCoLC)1341038700 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Franke, Johann |d 1992- |e VerfasserIn |0 (DE-588)1178490424 |0 (DE-627)1049414365 |0 (DE-576)517810972 |4 aut | |
| 245 | 1 | 0 | |a Ramanujan identities of higher degree |c J. Franke |
| 264 | 1 | |c 1 October 2018 | |
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 19.02.2019 | ||
| 520 | |a We use techniques regarding generalized Dirichlet series developed in Franke (Ramanujan J 46(1):91-102, 2018) to obtain formulas for a wide class of L-functions at rational arguments. It is shown that these values are related to special functions on the upper half plane which possess similar properties as modular forms. Several formulas of Ramanujan involving values of L-functions at integer arguments turn out to be special cases of the main theorem. | ||
| 650 | 4 | |a Eichler integrals | |
| 650 | 4 | |a Infinite series | |
| 650 | 4 | |a L-functions | |
| 650 | 4 | |a Mellin transform | |
| 650 | 4 | |a Modular forms | |
| 650 | 4 | |a Primary: 11M06 | |
| 650 | 4 | |a Secondary: 11M99 | |
| 773 | 0 | 8 | |i Enthalten in |t Research in number theory |d Heidelberg : Springer, 2015 |g 4(2018,4) Artikel-Nummer 42, 19 Seiten |h Online-Ressource |w (DE-627)833507990 |w (DE-600)2831074-3 |w (DE-576)443329419 |x 2363-9555 |7 nnas |a Ramanujan identities of higher degree |
| 773 | 1 | 8 | |g volume:4 |g year:2018 |g number:4 |g pages:42 |a Ramanujan identities of higher degree |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/s40993-018-0135-9 |x Resolving-System |x Verlag |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s40993-018-0135-9 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20190219 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 1178490424 |a Franke, Johann |m 1178490424:Franke, Johann |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PF1178490424 |e 110100PF1178490424 |e 110000PF1178490424 |e 110400PF1178490424 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1587811650 |e 3056220025 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"given":"Johann","family":"Franke","role":"aut","display":"Franke, Johann","roleDisplay":"VerfasserIn"}],"name":{"displayForm":["J. Franke"]},"id":{"doi":["10.1007/s40993-018-0135-9"],"eki":["1587811650"]},"origin":[{"dateIssuedDisp":"1 October 2018","dateIssuedKey":"2018"}],"title":[{"title":"Ramanujan identities of higher degree","title_sort":"Ramanujan identities of higher degree"}],"relHost":[{"recId":"833507990","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Ramanujan identities of higher degreeResearch in number theory","note":["Gesehen am 27.08.15"],"part":{"volume":"4","text":"4(2018,4) Artikel-Nummer 42, 19 Seiten","year":"2018","pages":"42","issue":"4"},"pubHistory":["1.2015 -"],"title":[{"title_sort":"Research in number theory","title":"Research in number theory","subtitle":"a SpringerOpen journal"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["833507990"],"zdb":["2831074-3"],"issn":["2363-9555"]},"origin":[{"publisherPlace":"Heidelberg","dateIssuedDisp":"2015-","dateIssuedKey":"2015","publisher":"Springer"}]}],"language":["eng"],"recId":"1587811650","note":["Gesehen am 19.02.2019"],"type":{"bibl":"article-journal","media":"Online-Ressource"}} | ||
| SRT | |a FRANKEJOHARAMANUJANI1201 | ||