Liftings and Borcherds products
This chapter serves as a brief introduction to the theory of theta-liftings with the main focus on Borcherds’ singular theta-lift and the construction of Borcherds products. Thus, after a few initial examples for liftings, we proceed to develop the tools needed to understand how the Borcherds lift w...
Saved in:
| Main Author: | |
|---|---|
| Format: | Chapter/Article Conference Paper |
| Language: | English |
| Published: |
16 October 2017
|
| In: |
L-functions and Automorphic Forms
Year: 2017, Pages: 333-366 |
| DOI: | 10.1007/978-3-319-69712-3_19 |
| Online Access: | Resolving-System, Volltext: http://dx.doi.org/10.1007/978-3-319-69712-3_19 Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-69712-3_19 |
| Author Notes: | Eric Hofmann |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1587814471 | ||
| 003 | DE-627 | ||
| 005 | 20220815105838.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190219s2017 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/978-3-319-69712-3_19 |2 doi | |
| 035 | |a (DE-627)1587814471 | ||
| 035 | |a (DE-576)517814471 | ||
| 035 | |a (DE-599)BSZ517814471 | ||
| 035 | |a (OCoLC)1341038794 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Hofmann, Eric |e VerfasserIn |0 (DE-588)144006693 |0 (DE-627)656809655 |0 (DE-576)340295910 |4 aut | |
| 245 | 1 | 0 | |a Liftings and Borcherds products |c Eric Hofmann |
| 264 | 1 | |c 16 October 2017 | |
| 300 | |a 34 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 19.02.2019 | ||
| 520 | |a This chapter serves as a brief introduction to the theory of theta-liftings with the main focus on Borcherds’ singular theta-lift and the construction of Borcherds products. Thus, after a few initial examples for liftings, we proceed to develop the tools needed to understand how the Borcherds lift works. Namely, we go through the construction of symmetric domains for orthogonal groups, introduce vector-valued modular forms and explain the definition of the Siegel theta-function. Then, we give a detailed treatment of the regularization recipe for the theta-integral and of the proof for the key properties of the additive lift: the location and type of its singularities. Finally, in the closing section, we sketch how to obtain a multiplicative lifting and the Borcherds’ products. | ||
| 773 | 0 | 8 | |i Enthalten in |t L-functions and Automorphic Forms |d Cham : Springer, 2017 |g (2017), Seite 333-366 |h Online-Ressource (VIII, 366 p. 22 illus, online resource) |w (DE-627)165390626X |w (DE-576)500974187 |z 9783319697123 |7 nnam |a Liftings and Borcherds products |
| 773 | 1 | 8 | |g year:2017 |g pages:333-366 |g extent:34 |a Liftings and Borcherds products |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/978-3-319-69712-3_19 |x Resolving-System |x Verlag |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/chapter/10.1007/978-3-319-69712-3_19 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20190219 | ||
| 993 | |a ConferencePaper | ||
| 994 | |a 2017 | ||
| 998 | |g 144006693 |a Hofmann, Eric |m 144006693:Hofmann, Eric |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PH144006693 |e 110100PH144006693 |e 110000PH144006693 |e 110400PH144006693 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1587814471 |e 3056223393 | ||
| BIB | |a Y | ||
| JSO | |a {"relHost":[{"id":{"isbn":["9783319697123"],"doi":["10.1007/978-3-319-69712-3"],"eki":["165390626X"]},"origin":[{"dateIssuedKey":"2017","publisher":"Springer","dateIssuedDisp":"2017","publisherPlace":"Cham"}],"name":{"displayForm":["edited by Jan Hendrik Bruinier, Winfried Kohnen"]},"physDesc":[{"extent":"Online-Ressource (VIII, 366 p. 22 illus, online resource)"}],"title":[{"title":"L-functions and Automorphic Forms","subtitle":"LAF, Heidelberg, February 22-26, 2016","title_sort":"L-functions and Automorphic Forms"}],"person":[{"given":"Jan Hendrik","family":"Bruinier","role":"edt","display":"Bruinier, Jan Hendrik","roleDisplay":"HerausgeberIn"},{"family":"Kohnen","given":"Winfried","display":"Kohnen, Winfried","roleDisplay":"HerausgeberIn","role":"edt"}],"part":{"text":"(2017), Seite 333-366","extent":"34","year":"2017","pages":"333-366"},"language":["eng"],"recId":"165390626X","disp":"Liftings and Borcherds productsL-functions and Automorphic Forms","type":{"bibl":"edited-book","media":"Online-Ressource"}}],"physDesc":[{"extent":"34 S."}],"name":{"displayForm":["Eric Hofmann"]},"id":{"eki":["1587814471"],"doi":["10.1007/978-3-319-69712-3_19"]},"origin":[{"dateIssuedDisp":"16 October 2017","dateIssuedKey":"2017"}],"recId":"1587814471","language":["eng"],"note":["Gesehen am 19.02.2019"],"type":{"bibl":"chapter","media":"Online-Ressource"},"person":[{"family":"Hofmann","given":"Eric","display":"Hofmann, Eric","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title_sort":"Liftings and Borcherds products","title":"Liftings and Borcherds products"}]} | ||
| SRT | |a HOFMANNERILIFTINGSAN1620 | ||