A chain rule formula for higher derivations and inverses of polynomial maps
The multidimensional chain rule formula for analytic functions and its generalisation to higher derivatives perfectly work in the algebraic setting in characteristic zero. In positive characteristic one runs into problems due to denominators in these formulas. In this article we show a direct analog...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
7 Nov 2016
|
| In: |
Arxiv
|
| Online Access: | Verlag, Volltext: http://arxiv.org/abs/1611.01940 |
| Author Notes: | Andreas Maurischat |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1588022846 | ||
| 003 | DE-627 | ||
| 005 | 20220815111847.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190225s2016 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1588022846 | ||
| 035 | |a (DE-576)518022846 | ||
| 035 | |a (DE-599)BSZ518022846 | ||
| 035 | |a (OCoLC)1341040064 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Maurischat, Andreas |e VerfasserIn |0 (DE-588)13265976X |0 (DE-627)525165347 |0 (DE-576)29928610X |4 aut | |
| 245 | 1 | 2 | |a A chain rule formula for higher derivations and inverses of polynomial maps |c Andreas Maurischat |
| 264 | 1 | |c 7 Nov 2016 | |
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 25.02.2019 | ||
| 520 | |a The multidimensional chain rule formula for analytic functions and its generalisation to higher derivatives perfectly work in the algebraic setting in characteristic zero. In positive characteristic one runs into problems due to denominators in these formulas. In this article we show a direct analog of these formulas using higher derivations which are defined in any characteristic. We also use these formulas to show how higher derivations to different coordinate systems are related to each other. Finally, we apply this to polynomial automorphisms in arbitrary characteristic and obtain a formula for the inverse of such a polynomial automorphism. | ||
| 650 | 4 | |a 12H05, 13N15, 14R15 | |
| 650 | 4 | |a Mathematics - Commutative Algebra | |
| 650 | 4 | |a Mathematics - Rings and Algebras | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2016) Artikel-Nummer 1611.01940, 15 Seiten |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a A chain rule formula for higher derivations and inverses of polynomial maps |
| 773 | 1 | 8 | |g year:2016 |a A chain rule formula for higher derivations and inverses of polynomial maps |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1611.01940 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20190225 | ||
| 993 | |a Article | ||
| 994 | |a 2016 | ||
| 998 | |g 13265976X |a Maurischat, Andreas |m 13265976X:Maurischat, Andreas |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1588022846 |e 3056633885 | ||
| BIB | |a Y | ||
| JSO | |a {"person":[{"role":"aut","display":"Maurischat, Andreas","roleDisplay":"VerfasserIn","given":"Andreas","family":"Maurischat"}],"name":{"displayForm":["Andreas Maurischat"]},"id":{"eki":["1588022846"]},"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"7 Nov 2016"}],"title":[{"title":"A chain rule formula for higher derivations and inverses of polynomial maps","title_sort":"chain rule formula for higher derivations and inverses of polynomial maps"}],"relHost":[{"type":{"bibl":"edited-book","media":"Online-Ressource"},"disp":"A chain rule formula for higher derivations and inverses of polynomial mapsArxiv","note":["Gesehen am 28.05.2024"],"language":["eng"],"recId":"509006531","pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"year":"2016","issue":"15 Seiten","text":"(2016) Artikel-Nummer 1611.01940, 15 Seiten","volume":"(2016) Artikel-Nummer 1611.01940"},"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]}}],"language":["eng"],"recId":"1588022846","type":{"media":"Online-Ressource","bibl":"chapter"},"note":["Gesehen am 25.02.2019"]} | ||
| SRT | |a MAURISCHATCHAINRULEF7201 | ||