Regular poles of local L-functions for GSp(4) with respect to split Bessel models (the subregular cases)

Piatetskii-Shapiro has defined local spinor L-factors for infinite-dimensional irreducible representations of GSp(4,k) over a local non-archimedean field k, attached to a choice of a Bessel model. We classify the so-called subregular poles, these are the regular poles that do not come from the asymp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rösner, Mirko (VerfasserIn) , Weissauer, Rainer (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 22 Oct 2018
In: Arxiv

Online-Zugang:Verlag, Volltext: http://arxiv.org/abs/1810.09419
Volltext
Verfasserangaben:Mirko Rösner, Rainer Weissauer
Beschreibung
Zusammenfassung:Piatetskii-Shapiro has defined local spinor L-factors for infinite-dimensional irreducible representations of GSp(4,k) over a local non-archimedean field k, attached to a choice of a Bessel model. We classify the so-called subregular poles, these are the regular poles that do not come from the asymptotic of the Bessel functions. For anisotropic Bessel models there are no subregular poles.
Beschreibung:Gesehen am 25.02.2019
Beschreibung:Online Resource