Tensor networks, p-adic fields, and algebraic curves: arithmetic and the AdS3 / CFT2 correspondence

One of the many remarkable properties of conformal field theory in two dimensions is its connection to algebraic geometry. Since every compact Riemann surface is a projective algebraic curve, many constructions of interest in physics (which a priori depend on the analytic structure of the spacetime)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Heydeman, Matthew (VerfasserIn) , Marcolli, Matilde (VerfasserIn) , Saberi, Ingmar (VerfasserIn) , Stoica, Bogdan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2018
In: Advances in theoretical and mathematical physics
Year: 2018, Jahrgang: 22, Heft: 1, Pages: 93-176
ISSN:1095-0753
DOI:10.4310/ATMP.2018.v22.n1.a4
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.4310/ATMP.2018.v22.n1.a4
Verlag, Volltext: https://www.intlpress.com/site/pub/pages/journals/items/atmp/content/vols/0022/0001/a004/index.html
Volltext
Verfasserangaben:Matthew Heydeman, Matilde Marcolli, Ingmar A. Saberi, Bogdan Stoica

MARC

LEADER 00000caa a22000002c 4500
001 1588164993
003 DE-627
005 20221010162642.0
007 cr uuu---uuuuu
008 190227s2018 xx |||||o 00| ||eng c
024 7 |a 10.4310/ATMP.2018.v22.n1.a4  |2 doi 
035 |a (DE-627)1588164993 
035 |a (DE-576)518164993 
035 |a (DE-599)BSZ518164993 
035 |a (OCoLC)1341040453 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Heydeman, Matthew  |e VerfasserIn  |0 (DE-588)1179265408  |0 (DE-627)1066777802  |0 (DE-576)518165612  |4 aut 
245 1 0 |a Tensor networks, p-adic fields, and algebraic curves  |b arithmetic and the AdS3 / CFT2 correspondence  |c Matthew Heydeman, Matilde Marcolli, Ingmar A. Saberi, Bogdan Stoica 
246 3 0 |a AdS3/CFT2 
264 1 |c 2018 
300 |a 84 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Im Titel sind die Ziffern 3 und 2 tiefgestellt 
500 |a Gesehen am 27.02.2019 
520 |a One of the many remarkable properties of conformal field theory in two dimensions is its connection to algebraic geometry. Since every compact Riemann surface is a projective algebraic curve, many constructions of interest in physics (which a priori depend on the analytic structure of the spacetime) can be formulated in purely algebraic language. This opens the door to interesting generalizations, obtained by taking another choice of field: for instance, the p-adics. We generalize the AdS/CFT correspondence according to this principle; the result is a formulation of holography in which the bulk geometry is discrete—the Bruhat–Tits tree for PGL(2,Qp)—but the group of bulk isometries nonetheless agrees with that of boundary conformal transformations and is not broken by discretization. 
700 1 |a Marcolli, Matilde  |d 1969-  |e VerfasserIn  |0 (DE-588)141750545  |0 (DE-627)704055430  |0 (DE-576)340062363  |4 aut 
700 1 |a Saberi, Ingmar  |e VerfasserIn  |0 (DE-588)1155601335  |0 (DE-627)1017875413  |0 (DE-576)501768211  |4 aut 
700 1 |a Stoica, Bogdan  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Advances in theoretical and mathematical physics  |d Cambridge, Mass. : International Press, 1997  |g 22(2018), 1, Seite 93-176  |h Online-Ressource  |w (DE-627)300897367  |w (DE-600)1483528-9  |w (DE-576)109633806  |x 1095-0753  |7 nnas  |a Tensor networks, p-adic fields, and algebraic curves arithmetic and the AdS3 / CFT2 correspondence 
773 1 8 |g volume:22  |g year:2018  |g number:1  |g pages:93-176  |g extent:84  |a Tensor networks, p-adic fields, and algebraic curves arithmetic and the AdS3 / CFT2 correspondence 
856 4 0 |u http://dx.doi.org/10.4310/ATMP.2018.v22.n1.a4  |x Resolving-System  |x Verlag  |3 Volltext 
856 4 0 |u https://www.intlpress.com/site/pub/pages/journals/items/atmp/content/vols/0022/0001/a004/index.html  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190227 
993 |a Article 
994 |a 2018 
998 |g 1155601335  |a Saberi, Ingmar  |m 1155601335:Saberi, Ingmar  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PS1155601335  |e 110100PS1155601335  |e 110000PS1155601335  |e 110400PS1155601335  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 3 
999 |a KXP-PPN1588164993  |e 3056819067 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"84 S."}],"relHost":[{"title":[{"title_sort":"Advances in theoretical and mathematical physics","title":"Advances in theoretical and mathematical physics","subtitle":"ATMP"}],"disp":"Tensor networks, p-adic fields, and algebraic curves arithmetic and the AdS3 / CFT2 correspondenceAdvances in theoretical and mathematical physics","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 20.05.25"],"recId":"300897367","language":["eng"],"pubHistory":["1.1997 -"],"titleAlt":[{"title":"ATMP"}],"part":{"year":"2018","pages":"93-176","issue":"1","volume":"22","text":"22(2018), 1, Seite 93-176","extent":"84"},"origin":[{"publisherPlace":"Cambridge, Mass.","dateIssuedKey":"1997","publisher":"International Press","dateIssuedDisp":"1997-"}],"id":{"issn":["1095-0753"],"eki":["300897367"],"zdb":["1483528-9"]},"physDesc":[{"extent":"Online-Ressource"}]}],"name":{"displayForm":["Matthew Heydeman, Matilde Marcolli, Ingmar A. Saberi, Bogdan Stoica"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"2018"}],"id":{"doi":["10.4310/ATMP.2018.v22.n1.a4"],"eki":["1588164993"]},"note":["Im Titel sind die Ziffern 3 und 2 tiefgestellt","Gesehen am 27.02.2019"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1588164993","language":["eng"],"person":[{"family":"Heydeman","given":"Matthew","display":"Heydeman, Matthew","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Marcolli, Matilde","role":"aut","family":"Marcolli","given":"Matilde"},{"family":"Saberi","given":"Ingmar","display":"Saberi, Ingmar","roleDisplay":"VerfasserIn","role":"aut"},{"display":"Stoica, Bogdan","roleDisplay":"VerfasserIn","role":"aut","family":"Stoica","given":"Bogdan"}],"title":[{"title_sort":"Tensor networks, p-adic fields, and algebraic curves","title":"Tensor networks, p-adic fields, and algebraic curves","subtitle":"arithmetic and the AdS3 / CFT2 correspondence"}]} 
SRT |a HEYDEMANMATENSORNETW2018