Holomorphic field theories and Calabi-Yau algebras

We consider the holomorphic twist of the worldvolume theory of flat D(2k-1)-branes transversely probing a Calabi-Yau manifold. A chain complex, constructed using the BV formalism, computes the local observables in the holomorphically twisted theory. Generalizing earlier work in the case k=2, we find...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eager, Richard (VerfasserIn) , Saberi, Ingmar (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 5 May 2018
In: Arxiv

Online-Zugang:Verlag, Volltext: http://arxiv.org/abs/1805.02084
Volltext
Verfasserangaben:Richard Eager and Ingmar Saberi
Beschreibung
Zusammenfassung:We consider the holomorphic twist of the worldvolume theory of flat D(2k-1)-branes transversely probing a Calabi-Yau manifold. A chain complex, constructed using the BV formalism, computes the local observables in the holomorphically twisted theory. Generalizing earlier work in the case k=2, we find that this complex can be identified with the Ginzburg dg algebra associated to the Calabi-Yau. However, the identification is subtle; the complex is the space of fields contributing to the holomorphic twist of the free theory, and its differential arises from interactions. For k=1, this holomorphically twisted theory is related to the elliptic genus. We give a general description for D1-branes probing a Calabi-Yau fourfold singularity, and for N=(0,2) quiver gauge theories.
Beschreibung:Gesehen am 27.02.2019
Beschreibung:Online Resource