Nonarchimedean holographic entropy from networks of perfect tensors
We consider a class of holographic quantum error-correcting codes, built from perfect tensors in network configurations dual to Bruhat-Tits trees and their quotients by Schottky groups corresponding to BTZ black holes. The resulting holographic states can be constructed in the limit of infinite netw...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
10 Dec 2018
|
| In: |
Arxiv
|
| Online-Zugang: | Verlag, Volltext: http://arxiv.org/abs/1812.04057 |
| Verfasserangaben: | Matthew Heydeman, Matilde Marcolli, Sarthak Parikh & Ingmar Saberi |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1588199266 | ||
| 003 | DE-627 | ||
| 005 | 20221010162516.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190227s2018 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1588199266 | ||
| 035 | |a (DE-576)518199266 | ||
| 035 | |a (DE-599)BSZ518199266 | ||
| 035 | |a (OCoLC)1341040705 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Heydeman, Matthew |e VerfasserIn |0 (DE-588)1179265408 |0 (DE-627)1066777802 |0 (DE-576)518165612 |4 aut | |
| 245 | 1 | 0 | |a Nonarchimedean holographic entropy from networks of perfect tensors |c Matthew Heydeman, Matilde Marcolli, Sarthak Parikh & Ingmar Saberi |
| 264 | 1 | |c 10 Dec 2018 | |
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 27.02.2019 | ||
| 520 | |a We consider a class of holographic quantum error-correcting codes, built from perfect tensors in network configurations dual to Bruhat-Tits trees and their quotients by Schottky groups corresponding to BTZ black holes. The resulting holographic states can be constructed in the limit of infinite network size. We obtain a p-adic version of entropy which obeys a Ryu-Takayanagi like formula for bipartite entanglement of connected or disconnected regions, in both genus-zero and genus-one p-adic backgrounds, along with a Bekenstein-Hawking-type formula for black hole entropy. We prove entropy inequalities obeyed by such tensor networks, such as subadditivity, strong subadditivity, and monogamy of mutual information (which is always saturated). In addition, we construct infinite classes of perfect tensors directly from semiclassical states in phase spaces over finite fields, generalizing the CRSS algorithm, and give Hamiltonians exhibiting these as vacua. | ||
| 650 | 4 | |a High Energy Physics - Theory | |
| 650 | 4 | |a Mathematical Physics | |
| 650 | 4 | |a Quantum Physics | |
| 700 | 1 | |a Marcolli, Matilde |d 1969- |e VerfasserIn |0 (DE-588)141750545 |0 (DE-627)704055430 |0 (DE-576)340062363 |4 aut | |
| 700 | 1 | |a Parikh, Sarthak |e VerfasserIn |4 aut | |
| 700 | 1 | |a Saberi, Ingmar |e VerfasserIn |0 (DE-588)1155601335 |0 (DE-627)1017875413 |0 (DE-576)501768211 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2018) Artikel-Nummer 1812.04057, 125 Seiten |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Nonarchimedean holographic entropy from networks of perfect tensors |
| 773 | 1 | 8 | |g year:2018 |a Nonarchimedean holographic entropy from networks of perfect tensors |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1812.04057 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20190227 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 1155601335 |a Saberi, Ingmar |m 1155601335:Saberi, Ingmar |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PS1155601335 |e 110100PS1155601335 |e 110000PS1155601335 |e 110400PS1155601335 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 4 |y j | ||
| 999 | |a KXP-PPN1588199266 |e 3056893054 | ||
| BIB | |a Y | ||
| JSO | |a {"note":["Gesehen am 27.02.2019"],"type":{"media":"Online-Ressource","bibl":"chapter"},"recId":"1588199266","relHost":[{"disp":"Nonarchimedean holographic entropy from networks of perfect tensorsArxiv","note":["Gesehen am 28.05.2024"],"type":{"media":"Online-Ressource","bibl":"edited-book"},"language":["eng"],"recId":"509006531","pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"issue":"125 Seiten","year":"2018","volume":"(2018) Artikel-Nummer 1812.04057","text":"(2018) Artikel-Nummer 1812.04057, 125 Seiten"},"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]}}],"language":["eng"],"name":{"displayForm":["Matthew Heydeman, Matilde Marcolli, Sarthak Parikh & Ingmar Saberi"]},"person":[{"roleDisplay":"VerfasserIn","display":"Heydeman, Matthew","role":"aut","family":"Heydeman","given":"Matthew"},{"given":"Matilde","family":"Marcolli","role":"aut","display":"Marcolli, Matilde","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Parikh, Sarthak","roleDisplay":"VerfasserIn","given":"Sarthak","family":"Parikh"},{"given":"Ingmar","family":"Saberi","role":"aut","roleDisplay":"VerfasserIn","display":"Saberi, Ingmar"}],"title":[{"title_sort":"Nonarchimedean holographic entropy from networks of perfect tensors","title":"Nonarchimedean holographic entropy from networks of perfect tensors"}],"origin":[{"dateIssuedDisp":"10 Dec 2018","dateIssuedKey":"2018"}],"id":{"eki":["1588199266"]}} | ||
| SRT | |a HEYDEMANMANONARCHIME1020 | ||