On the structure of algebraic cobordism

In this paper we investigate the structure of algebraic cobordism of Levine-Morel as a module over the Lazard ring with the action of Landweber-Novikov and symmetric operations on it. We show that the associated graded groups of algebraic cobordism with respect to the topological filtration Ω(r)⁎(X)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Sechin, Pavel (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 31 May 2018
In: Advances in mathematics
Year: 2018, Jahrgang: 333, Pages: 314-349
ISSN:1090-2082
DOI:10.1016/j.aim.2018.05.034
Online-Zugang:Resolving-System, Volltext: http://dx.doi.org/10.1016/j.aim.2018.05.034
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0001870818302093
Volltext
Verfasserangaben:Pavel Sechin

MARC

LEADER 00000caa a2200000 c 4500
001 158838909X
003 DE-627
005 20220815115738.0
007 cr uuu---uuuuu
008 190306s2018 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.aim.2018.05.034  |2 doi 
035 |a (DE-627)158838909X 
035 |a (DE-576)51838909X 
035 |a (DE-599)BSZ51838909X 
035 |a (OCoLC)1341040716 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Sechin, Pavel  |e VerfasserIn  |0 (DE-588)115594691X  |0 (DE-627)1018503331  |0 (DE-576)501950400  |4 aut 
245 1 0 |a On the structure of algebraic cobordism  |c Pavel Sechin 
264 1 |c 31 May 2018 
300 |a 36 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 06.03.2019 
520 |a In this paper we investigate the structure of algebraic cobordism of Levine-Morel as a module over the Lazard ring with the action of Landweber-Novikov and symmetric operations on it. We show that the associated graded groups of algebraic cobordism with respect to the topological filtration Ω(r)⁎(X) are unions of finitely presented L-modules of very specific structure. Namely, these submodules possess a filtration such that the corresponding factors are either free or isomorphic to cyclic modules L/I(p,n)x where deg⁡x≥pn−1p−1. As a corollary we prove the Syzygies Conjecture of Vishik on the existence of certain free L-resolutions of Ω⁎(X), and show that algebraic cobordism of a smooth surface can be described in terms of K0 together with a topological filtration. 
650 4 |a Algebraic cobordism 
650 4 |a Landweber's filtration 
650 4 |a Symmetric operations 
773 0 8 |i Enthalten in  |t Advances in mathematics  |d Amsterdam [u.a.] : Elsevier, 1961  |g 333(2018), Seite 314-349  |h Online-Ressource  |w (DE-627)268759200  |w (DE-600)1472893-X  |w (DE-576)103373292  |x 1090-2082  |7 nnas  |a On the structure of algebraic cobordism 
773 1 8 |g volume:333  |g year:2018  |g pages:314-349  |g extent:36  |a On the structure of algebraic cobordism 
856 4 0 |u http://dx.doi.org/10.1016/j.aim.2018.05.034  |x Resolving-System  |x Verlag  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0001870818302093  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190306 
993 |a Article 
994 |a 2018 
998 |g 115594691X  |a Sechin, Pavel  |m 115594691X:Sechin, Pavel  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PS115594691X  |e 110100PS115594691X  |e 110000PS115594691X  |e 110400PS115594691X  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j  |y j 
999 |a KXP-PPN158838909X  |e 3057555896 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 06.03.2019"],"recId":"158838909X","language":["eng"],"person":[{"family":"Sechin","given":"Pavel","display":"Sechin, Pavel","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title_sort":"On the structure of algebraic cobordism","title":"On the structure of algebraic cobordism"}],"physDesc":[{"extent":"36 S."}],"relHost":[{"id":{"issn":["1090-2082"],"zdb":["1472893-X"],"eki":["268759200"]},"origin":[{"publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.] ; Orlando, Fla. ; Brugge ; San Diego, Calif. [u.a.]","dateIssuedKey":"1961","publisher":"Elsevier ; Academic Press ; Academic Press ; Academic Press ; Acad. Press","dateIssuedDisp":"1961-"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Advances in mathematics","title":"Advances in mathematics"}],"recId":"268759200","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 14.09.2020"],"disp":"On the structure of algebraic cobordismAdvances in mathematics","part":{"text":"333(2018), Seite 314-349","volume":"333","extent":"36","year":"2018","pages":"314-349"},"pubHistory":["1.1961/65(1965) - 231.2012; Vol. 232.2013 -"]}],"name":{"displayForm":["Pavel Sechin"]},"origin":[{"dateIssuedDisp":"31 May 2018","dateIssuedKey":"2018"}],"id":{"doi":["10.1016/j.aim.2018.05.034"],"eki":["158838909X"]}} 
SRT |a SECHINPAVEONTHESTRUC3120