On the structure of algebraic cobordism
In this paper we investigate the structure of algebraic cobordism of Levine-Morel as a module over the Lazard ring with the action of Landweber-Novikov and symmetric operations on it. We show that the associated graded groups of algebraic cobordism with respect to the topological filtration Ω(r)⁎(X)...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
31 May 2018
|
| In: |
Advances in mathematics
Year: 2018, Jahrgang: 333, Pages: 314-349 |
| ISSN: | 1090-2082 |
| DOI: | 10.1016/j.aim.2018.05.034 |
| Online-Zugang: | Resolving-System, Volltext: http://dx.doi.org/10.1016/j.aim.2018.05.034 Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0001870818302093 |
| Verfasserangaben: | Pavel Sechin |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 158838909X | ||
| 003 | DE-627 | ||
| 005 | 20220815115738.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190306s2018 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.aim.2018.05.034 |2 doi | |
| 035 | |a (DE-627)158838909X | ||
| 035 | |a (DE-576)51838909X | ||
| 035 | |a (DE-599)BSZ51838909X | ||
| 035 | |a (OCoLC)1341040716 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Sechin, Pavel |e VerfasserIn |0 (DE-588)115594691X |0 (DE-627)1018503331 |0 (DE-576)501950400 |4 aut | |
| 245 | 1 | 0 | |a On the structure of algebraic cobordism |c Pavel Sechin |
| 264 | 1 | |c 31 May 2018 | |
| 300 | |a 36 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 06.03.2019 | ||
| 520 | |a In this paper we investigate the structure of algebraic cobordism of Levine-Morel as a module over the Lazard ring with the action of Landweber-Novikov and symmetric operations on it. We show that the associated graded groups of algebraic cobordism with respect to the topological filtration Ω(r)⁎(X) are unions of finitely presented L-modules of very specific structure. Namely, these submodules possess a filtration such that the corresponding factors are either free or isomorphic to cyclic modules L/I(p,n)x where degx≥pn−1p−1. As a corollary we prove the Syzygies Conjecture of Vishik on the existence of certain free L-resolutions of Ω⁎(X), and show that algebraic cobordism of a smooth surface can be described in terms of K0 together with a topological filtration. | ||
| 650 | 4 | |a Algebraic cobordism | |
| 650 | 4 | |a Landweber's filtration | |
| 650 | 4 | |a Symmetric operations | |
| 773 | 0 | 8 | |i Enthalten in |t Advances in mathematics |d Amsterdam [u.a.] : Elsevier, 1961 |g 333(2018), Seite 314-349 |h Online-Ressource |w (DE-627)268759200 |w (DE-600)1472893-X |w (DE-576)103373292 |x 1090-2082 |7 nnas |a On the structure of algebraic cobordism |
| 773 | 1 | 8 | |g volume:333 |g year:2018 |g pages:314-349 |g extent:36 |a On the structure of algebraic cobordism |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1016/j.aim.2018.05.034 |x Resolving-System |x Verlag |3 Volltext |
| 856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0001870818302093 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20190306 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 115594691X |a Sechin, Pavel |m 115594691X:Sechin, Pavel |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PS115594691X |e 110100PS115594691X |e 110000PS115594691X |e 110400PS115594691X |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN158838909X |e 3057555896 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 06.03.2019"],"recId":"158838909X","language":["eng"],"person":[{"family":"Sechin","given":"Pavel","display":"Sechin, Pavel","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title_sort":"On the structure of algebraic cobordism","title":"On the structure of algebraic cobordism"}],"physDesc":[{"extent":"36 S."}],"relHost":[{"id":{"issn":["1090-2082"],"zdb":["1472893-X"],"eki":["268759200"]},"origin":[{"publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.] ; Orlando, Fla. ; Brugge ; San Diego, Calif. [u.a.]","dateIssuedKey":"1961","publisher":"Elsevier ; Academic Press ; Academic Press ; Academic Press ; Acad. Press","dateIssuedDisp":"1961-"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Advances in mathematics","title":"Advances in mathematics"}],"recId":"268759200","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 14.09.2020"],"disp":"On the structure of algebraic cobordismAdvances in mathematics","part":{"text":"333(2018), Seite 314-349","volume":"333","extent":"36","year":"2018","pages":"314-349"},"pubHistory":["1.1961/65(1965) - 231.2012; Vol. 232.2013 -"]}],"name":{"displayForm":["Pavel Sechin"]},"origin":[{"dateIssuedDisp":"31 May 2018","dateIssuedKey":"2018"}],"id":{"doi":["10.1016/j.aim.2018.05.034"],"eki":["158838909X"]}} | ||
| SRT | |a SECHINPAVEONTHESTRUC3120 | ||