SRL4ORL: Improving opinion role labeling using multi-task learning with Semantic role labeling [source code]

This repository contains code for reproducing experiments done in Marasovic and Frank (2018). Paper abstract: For over a decade, machine learning has been used to extract opinion-holder-target structures from text to answer the question "Who expressed what kind of sentiment towards what?"...

Full description

Saved in:
Bibliographic Details
Main Author: Marasović, Ana (Author)
Format: Database Research Data
Language:English
Published: Heidelberg Universität 2019-02-04
DOI:10.11588/data/LWN9XE
Subjects:
Online Access:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.11588/data/LWN9XE
Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/LWN9XE
Get full text
Author Notes:Ana Marasovic

MARC

LEADER 00000cmi a2200000 c 4500
001 1588395936
003 DE-627
005 20191127141830.0
006 su| d|o |0 |0
007 cr uuu---uuuuu
008 190306c20199999xx |o | eng c
024 7 |a 10.11588/data/LWN9XE  |2 doi 
035 |a (DE-627)1588395936 
035 |a (DE-576)518395936 
035 |a (DE-599)BSZ518395936 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Marasović, Ana  |d 1991-  |e VerfasserIn  |0 (DE-588)1179855957  |0 (DE-627)1067537287  |0 (DE-576)518391639  |4 aut 
245 1 0 |a SRL4ORL: Improving opinion role labeling using multi-task learning with Semantic role labeling [source code]  |c Ana Marasovic 
264 1 |a Heidelberg  |b Universität  |c 2019-02-04 
300 |a 1 Online-Ressource (1 File) 
336 |a Computerdaten  |b cod  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 06.03.2019 
520 |a This repository contains code for reproducing experiments done in Marasovic and Frank (2018). Paper abstract: For over a decade, machine learning has been used to extract opinion-holder-target structures from text to answer the question "Who expressed what kind of sentiment towards what?". Recent neural approaches do not outperform the state-of-the-art feature-based models for Opinion Role Labeling (ORL). We suspect this is due to the scarcity of labeled training data and address this issue using different multi-task learning (MTL) techniques with a related task which has substantially more data, i.e. Semantic Role Labeling (SRL). We show that two MTL models improve significantly over the single-task model for labeling of both holders and targets, on the development and the test sets. We found that the vanilla MTL model, which makes predictions using only shared ORL and SRL features, performs the best. With deeper analysis, we determine what works and what might be done to make further improvements for ORL. Data for ORL Download MPQA 2.0 corpus. Check mpqa2-pytools for example usage. Splits can be found in the datasplit folder. Data for SRL The data is provided by: CoNLL-2005 Shared Task, but the original words are from the Penn Treebank dataset, which is not publicly available. How to train models? python main.py --adv_coef 0.0 --model fs --exp_setup_id new --n_layers_orl 0 --begin_fold 0 --end_fold 4 python main.py --adv_coef 0.0 --model html --exp_setup_id new --n_layers_orl 1 --n_layers_shared 2 --begin_fold 0 --end_fold 4 python main.py --adv_coef 0.0 --model sp --exp_setup_id new --n_layers_orl 3 --begin_fold 0 --end_fold 4 python main.py --adv_coef 0.1 --model asp --exp_setup_id prior --n_layers_orl 3 --begin_fold 0 --end_fold 10 
655 7 |a Forschungsdaten  |0 (DE-588)1098579690  |0 (DE-627)857755366  |0 (DE-576)469182156  |2 gnd-content 
655 7 |a Datenbank  |0 (DE-588)4011119-2  |0 (DE-627)106354256  |0 (DE-576)208891943  |2 gnd-content 
787 0 8 |i Forschungsdaten zu  |a Marasović, Ana, 1991 -   |t SRL4ORL: Improving opinion role labeling using multi-task learning with semantic role labeling  |d 2018  |w (DE-627)1588396886  |w (DE-576)518396886 
856 4 0 |u http://dx.doi.org/10.11588/data/LWN9XE  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/LWN9XE  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a BO 
992 |a 20190306 
993 |a ResearchData 
994 |a 2019 
998 |g 1179855957  |a Marasović, Ana  |m 1179855957:Marasović, Ana  |d 90000  |d 90500  |e 90000PM1179855957  |e 90500PM1179855957  |k 0/90000/  |k 1/90000/90500/  |p 1  |x j  |y j 
999 |a KXP-PPN1588395936  |e 3057564658 
BIB |a Y 
JSO |a {"language":["eng"],"recId":"1588395936","physDesc":[{"extent":"1 Online-Ressource (1 File)"}],"note":["Gesehen am 06.03.2019"],"type":{"media":"Online-Ressource","bibl":"dataset"},"id":{"eki":["1588395936"],"doi":["10.11588/data/LWN9XE"]},"origin":[{"publisher":"Universität","dateIssuedKey":"2019","dateIssuedDisp":"2019-02-04","publisherPlace":"Heidelberg"}],"title":[{"title":"SRL4ORL: Improving opinion role labeling using multi-task learning with Semantic role labeling [source code]","title_sort":"SRL4ORL: Improving opinion role labeling using multi-task learning with Semantic role labeling [source code]"}],"name":{"displayForm":["Ana Marasovic"]},"person":[{"roleDisplay":"VerfasserIn","display":"Marasović, Ana","role":"aut","family":"Marasović","given":"Ana"}]} 
SRT |a MARASOVICASRL4ORLIMP2019