Globally optimal joint image segmentation and shape matching based on Wasserstein modes

A functional for joint variational object segmentation and shape matching is developed. The formulation is based on optimal transport w.r.t. geometric distance and local feature similarity. Geometric invariance and modelling of object-typical statistical variations is achieved by introducing degrees...

Full description

Saved in:
Bibliographic Details
Main Authors: Schmitzer, Bernhard (Author) , Schnörr, Christoph (Author)
Format: Article (Journal)
Language:English
Published: 2015
In: Journal of mathematical imaging and vision
Year: 2014, Volume: 52, Issue: 3, Pages: 436-458
ISSN:1573-7683
DOI:10.1007/s10851-014-0546-8
Online Access:Resolving-System, Volltext: http://dx.doi.org/10.1007/s10851-014-0546-8
Verlag, Volltext: https://link.springer.com/article/10.1007/s10851-014-0546-8
Get full text
Author Notes:Bernhard Schmitzer, Christoph Schnörr

MARC

LEADER 00000caa a2200000 c 4500
001 1588442063
003 DE-627
005 20220815120212.0
007 cr uuu---uuuuu
008 190307r20152014xx |||||o 00| ||eng c
024 7 |a 10.1007/s10851-014-0546-8  |2 doi 
035 |a (DE-627)1588442063 
035 |a (DE-576)518442063 
035 |a (DE-599)BSZ518442063 
035 |a (OCoLC)1341041093 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Schmitzer, Bernhard  |e VerfasserIn  |0 (DE-588)1052204724  |0 (DE-627)787990426  |0 (DE-576)407956654  |4 aut 
245 1 0 |a Globally optimal joint image segmentation and shape matching based on Wasserstein modes  |c Bernhard Schmitzer, Christoph Schnörr 
264 1 |c 2015 
300 |a 23 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a First online: 07 November 2014 
500 |a Gesehen am 07.03.2019 
520 |a A functional for joint variational object segmentation and shape matching is developed. The formulation is based on optimal transport w.r.t. geometric distance and local feature similarity. Geometric invariance and modelling of object-typical statistical variations is achieved by introducing degrees of freedom that describe transformations and deformations of the shape template. The shape model is mathematically equivalent to contour-based approaches but inference can be performed without conversion between the contour and region representations, allowing combination with other convex segmentation approaches and simplifying optimization. While the overall functional is non-convex, non-convexity is confined to a low-dimensional variable. We propose a locally optimal alternating optimization scheme and a globally optimal branch and bound scheme, based on adaptive convex relaxation. Combining both methods allows to eliminate the delicate initialization problem inherent to many contour based approaches while remaining computationally practical. The properties of the functional, its ability to adapt to a wide range of input data structures and the different optimization schemes are illustrated and compared by numerical experiments. 
534 |c 2014 
650 4 |a Convex relaxation 
650 4 |a Image segmentation 
650 4 |a Object matching 
650 4 |a Optimal transport 
650 4 |a Shape analysis 
700 1 |a Schnörr, Christoph  |e VerfasserIn  |0 (DE-588)1023033348  |0 (DE-627)717351017  |0 (DE-576)168404540  |4 aut 
773 0 8 |i Enthalten in  |t Journal of mathematical imaging and vision  |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1992  |g 52(2015), 3, Seite 436-458  |h Online-Ressource  |w (DE-627)271179465  |w (DE-600)1479363-5  |w (DE-576)110512847  |x 1573-7683  |7 nnas  |a Globally optimal joint image segmentation and shape matching based on Wasserstein modes 
773 1 8 |g volume:52  |g year:2015  |g number:3  |g pages:436-458  |g extent:23  |a Globally optimal joint image segmentation and shape matching based on Wasserstein modes 
856 4 0 |u http://dx.doi.org/10.1007/s10851-014-0546-8  |x Resolving-System  |x Verlag  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s10851-014-0546-8  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190307 
993 |a Article 
994 |a 2015 
998 |g 1023033348  |a Schnörr, Christoph  |m 1023033348:Schnörr, Christoph  |d 700000  |d 720000  |e 700000PS1023033348  |e 720000PS1023033348  |k 0/700000/  |k 1/700000/720000/  |p 2  |y j 
998 |g 1052204724  |a Schmitzer, Bernhard  |m 1052204724:Schmitzer, Bernhard  |p 1  |x j 
999 |a KXP-PPN1588442063  |e 3057788009 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2015","dateIssuedDisp":"2015"}],"note":["First online: 07 November 2014","Gesehen am 07.03.2019"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"Globally optimal joint image segmentation and shape matching based on Wasserstein modes","title":"Globally optimal joint image segmentation and shape matching based on Wasserstein modes"}],"language":["eng"],"person":[{"role":"aut","given":"Bernhard","family":"Schmitzer","display":"Schmitzer, Bernhard"},{"role":"aut","given":"Christoph","display":"Schnörr, Christoph","family":"Schnörr"}],"relHost":[{"disp":"Globally optimal joint image segmentation and shape matching based on Wasserstein modesJournal of mathematical imaging and vision","language":["eng"],"note":["Gesehen am 01.11.05"],"origin":[{"dateIssuedDisp":"1992-","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]","dateIssuedKey":"1992","publisher":"Springer Science + Business Media B.V ; Kluwer"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title_sort":"Journal of mathematical imaging and vision","title":"Journal of mathematical imaging and vision"}],"part":{"pages":"436-458","text":"52(2015), 3, Seite 436-458","year":"2015","volume":"52","extent":"23","issue":"3"},"pubHistory":["1.1992 -"],"recId":"271179465","physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["271179465"],"issn":["1573-7683"],"zdb":["1479363-5"]}}],"id":{"doi":["10.1007/s10851-014-0546-8"],"eki":["1588442063"]},"name":{"displayForm":["Bernhard Schmitzer, Christoph Schnörr"]},"physDesc":[{"extent":"23 S."}],"recId":"1588442063"} 
SRT |a SCHMITZERBGLOBALLYOP2015