Comparative evaluation of machine learning strategies for analyzing big data in psychiatry
The requirement of innovative big data analytics has become a critical success factor for research in biological psychiatry. Integrative analyses across distributed data resources are considered essential for untangling the biological complexity of mental illnesses. However, little is known about al...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
29 October 2018
|
| In: |
International journal of molecular sciences
Year: 2018, Volume: 19, Issue: 11 |
| ISSN: | 1422-0067 |
| DOI: | 10.3390/ijms19113387 |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.3390/ijms19113387 Verlag, Volltext: https://www.mdpi.com/1422-0067/19/11/3387 |
| Author Notes: | Han Cao, Andreas Meyer-Lindenberg, Emanuel Schwarz (Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University) |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1590359275 | ||
| 003 | DE-627 | ||
| 005 | 20220815123523.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190315s2018 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3390/ijms19113387 |2 doi | |
| 035 | |a (DE-627)1590359275 | ||
| 035 | |a (DE-576)520359275 | ||
| 035 | |a (DE-599)BSZ520359275 | ||
| 035 | |a (OCoLC)1341041462 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Cao, Han |d 1987- |e VerfasserIn |0 (DE-588)1156200083 |0 (DE-627)1018678115 |0 (DE-576)502030283 |4 aut | |
| 245 | 1 | 0 | |a Comparative evaluation of machine learning strategies for analyzing big data in psychiatry |c Han Cao, Andreas Meyer-Lindenberg, Emanuel Schwarz (Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University) |
| 264 | 1 | |c 29 October 2018 | |
| 300 | |a 15 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 15.03.2019 | ||
| 520 | |a The requirement of innovative big data analytics has become a critical success factor for research in biological psychiatry. Integrative analyses across distributed data resources are considered essential for untangling the biological complexity of mental illnesses. However, little is known about algorithm properties for such integrative machine learning. Here, we performed a comparative analysis of eight machine learning algorithms for identification of reproducible biological fingerprints across data sources, using five transcriptome-wide expression datasets of schizophrenia patients and controls as a use case. We found that multi-task learning (MTL) with network structure (MTL_NET) showed superior accuracy compared to other MTL formulations as well as single task learning, and tied performance with support vector machines (SVM). Compared to SVM, MTL_NET showed significant benefits regarding the variability of accuracy estimates, as well as its robustness to cross-dataset and sampling variability. These results support the utility of this algorithm as a flexible tool for integrative machine learning in psychiatry. | ||
| 650 | 4 | |a biomarker discovery | |
| 650 | 4 | |a machine learning | |
| 650 | 4 | |a multi-task learning | |
| 650 | 4 | |a psychiatry | |
| 700 | 1 | |a Meyer-Lindenberg, Andreas |d 1965- |e VerfasserIn |0 (DE-588)1029137390 |0 (DE-627)732483069 |0 (DE-576)376589876 |4 aut | |
| 700 | 1 | |a Schwarz, Emanuel |e VerfasserIn |0 (DE-588)1055051260 |0 (DE-627)792581040 |0 (DE-576)411121596 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t International journal of molecular sciences |d Basel : Molecular Diversity Preservation International, 2000 |g Volume 19, issue 11 (2018) Artikel-Nummer 3387, Seite 1-15 |h Online-Ressource |w (DE-627)316340715 |w (DE-600)2019364-6 |w (DE-576)281194653 |x 1422-0067 |7 nnas |a Comparative evaluation of machine learning strategies for analyzing big data in psychiatry |
| 773 | 1 | 8 | |g volume:19 |g year:2018 |g number:11 |g extent:15 |a Comparative evaluation of machine learning strategies for analyzing big data in psychiatry |
| 856 | 4 | 0 | |u http://dx.doi.org/10.3390/ijms19113387 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://www.mdpi.com/1422-0067/19/11/3387 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20190315 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 1055051260 |a Schwarz, Emanuel |m 1055051260:Schwarz, Emanuel |d 60000 |e 60000PS1055051260 |k 0/60000/ |p 3 |y j | ||
| 998 | |g 1029137390 |a Meyer-Lindenberg, Andreas |m 1029137390:Meyer-Lindenberg, Andreas |d 60000 |d 700000 |d 718000 |e 60000PM1029137390 |e 700000PM1029137390 |e 718000PM1029137390 |k 0/60000/ |k 0/700000/ |k 1/700000/718000/ |p 2 | ||
| 998 | |g 1156200083 |a Cao, Han |m 1156200083:Cao, Han |d 60000 |e 60000PC1156200083 |k 0/60000/ |p 1 |x j | ||
| 999 | |a KXP-PPN1590359275 |e 3061400915 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"recId":"1590359275","person":[{"display":"Cao, Han","family":"Cao","given":"Han","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Andreas","display":"Meyer-Lindenberg, Andreas","family":"Meyer-Lindenberg","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"VerfasserIn","role":"aut","given":"Emanuel","family":"Schwarz","display":"Schwarz, Emanuel"}],"name":{"displayForm":["Han Cao, Andreas Meyer-Lindenberg, Emanuel Schwarz (Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University)"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"29 October 2018"}],"title":[{"title_sort":"Comparative evaluation of machine learning strategies for analyzing big data in psychiatry","title":"Comparative evaluation of machine learning strategies for analyzing big data in psychiatry"}],"language":["eng"],"id":{"eki":["1590359275"],"doi":["10.3390/ijms19113387"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"relHost":[{"recId":"316340715","titleAlt":[{"title":"IJMS"}],"origin":[{"dateIssuedKey":"2000","publisherPlace":"Basel","publisher":"Molecular Diversity Preservation International","dateIssuedDisp":"2000-"}],"pubHistory":["1.2000 -"],"disp":"Comparative evaluation of machine learning strategies for analyzing big data in psychiatryInternational journal of molecular sciences","type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"title":[{"title_sort":"International journal of molecular sciences","title":"International journal of molecular sciences"}],"part":{"extent":"15","text":"Volume 19, issue 11 (2018) Artikel-Nummer 3387, Seite 1-15","year":"2018","issue":"11","volume":"19"},"note":["Gesehen am 17.09.20"],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2019364-6"],"issn":["1422-0067","1661-6596"],"eki":["316340715"]}}],"note":["Gesehen am 15.03.2019"],"physDesc":[{"extent":"15 S."}]} | ||
| SRT | |a CAOHANMEYECOMPARATIV2920 | ||