Comparative evaluation of machine learning strategies for analyzing big data in psychiatry

The requirement of innovative big data analytics has become a critical success factor for research in biological psychiatry. Integrative analyses across distributed data resources are considered essential for untangling the biological complexity of mental illnesses. However, little is known about al...

Full description

Saved in:
Bibliographic Details
Main Authors: Cao, Han (Author) , Meyer-Lindenberg, Andreas (Author) , Schwarz, Emanuel (Author)
Format: Article (Journal)
Language:English
Published: 29 October 2018
In: International journal of molecular sciences
Year: 2018, Volume: 19, Issue: 11
ISSN:1422-0067
DOI:10.3390/ijms19113387
Online Access:Verlag, Volltext: http://dx.doi.org/10.3390/ijms19113387
Verlag, Volltext: https://www.mdpi.com/1422-0067/19/11/3387
Get full text
Author Notes:Han Cao, Andreas Meyer-Lindenberg, Emanuel Schwarz (Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University)

MARC

LEADER 00000caa a2200000 c 4500
001 1590359275
003 DE-627
005 20220815123523.0
007 cr uuu---uuuuu
008 190315s2018 xx |||||o 00| ||eng c
024 7 |a 10.3390/ijms19113387  |2 doi 
035 |a (DE-627)1590359275 
035 |a (DE-576)520359275 
035 |a (DE-599)BSZ520359275 
035 |a (OCoLC)1341041462 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Cao, Han  |d 1987-  |e VerfasserIn  |0 (DE-588)1156200083  |0 (DE-627)1018678115  |0 (DE-576)502030283  |4 aut 
245 1 0 |a Comparative evaluation of machine learning strategies for analyzing big data in psychiatry  |c Han Cao, Andreas Meyer-Lindenberg, Emanuel Schwarz (Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University) 
264 1 |c 29 October 2018 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 15.03.2019 
520 |a The requirement of innovative big data analytics has become a critical success factor for research in biological psychiatry. Integrative analyses across distributed data resources are considered essential for untangling the biological complexity of mental illnesses. However, little is known about algorithm properties for such integrative machine learning. Here, we performed a comparative analysis of eight machine learning algorithms for identification of reproducible biological fingerprints across data sources, using five transcriptome-wide expression datasets of schizophrenia patients and controls as a use case. We found that multi-task learning (MTL) with network structure (MTL_NET) showed superior accuracy compared to other MTL formulations as well as single task learning, and tied performance with support vector machines (SVM). Compared to SVM, MTL_NET showed significant benefits regarding the variability of accuracy estimates, as well as its robustness to cross-dataset and sampling variability. These results support the utility of this algorithm as a flexible tool for integrative machine learning in psychiatry. 
650 4 |a biomarker discovery 
650 4 |a machine learning 
650 4 |a multi-task learning 
650 4 |a psychiatry 
700 1 |a Meyer-Lindenberg, Andreas  |d 1965-  |e VerfasserIn  |0 (DE-588)1029137390  |0 (DE-627)732483069  |0 (DE-576)376589876  |4 aut 
700 1 |a Schwarz, Emanuel  |e VerfasserIn  |0 (DE-588)1055051260  |0 (DE-627)792581040  |0 (DE-576)411121596  |4 aut 
773 0 8 |i Enthalten in  |t International journal of molecular sciences  |d Basel : Molecular Diversity Preservation International, 2000  |g Volume 19, issue 11 (2018) Artikel-Nummer 3387, Seite 1-15  |h Online-Ressource  |w (DE-627)316340715  |w (DE-600)2019364-6  |w (DE-576)281194653  |x 1422-0067  |7 nnas  |a Comparative evaluation of machine learning strategies for analyzing big data in psychiatry 
773 1 8 |g volume:19  |g year:2018  |g number:11  |g extent:15  |a Comparative evaluation of machine learning strategies for analyzing big data in psychiatry 
856 4 0 |u http://dx.doi.org/10.3390/ijms19113387  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://www.mdpi.com/1422-0067/19/11/3387  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190315 
993 |a Article 
994 |a 2018 
998 |g 1055051260  |a Schwarz, Emanuel  |m 1055051260:Schwarz, Emanuel  |d 60000  |e 60000PS1055051260  |k 0/60000/  |p 3  |y j 
998 |g 1029137390  |a Meyer-Lindenberg, Andreas  |m 1029137390:Meyer-Lindenberg, Andreas  |d 60000  |d 700000  |d 718000  |e 60000PM1029137390  |e 700000PM1029137390  |e 718000PM1029137390  |k 0/60000/  |k 0/700000/  |k 1/700000/718000/  |p 2 
998 |g 1156200083  |a Cao, Han  |m 1156200083:Cao, Han  |d 60000  |e 60000PC1156200083  |k 0/60000/  |p 1  |x j 
999 |a KXP-PPN1590359275  |e 3061400915 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1590359275","person":[{"display":"Cao, Han","family":"Cao","given":"Han","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Andreas","display":"Meyer-Lindenberg, Andreas","family":"Meyer-Lindenberg","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"VerfasserIn","role":"aut","given":"Emanuel","family":"Schwarz","display":"Schwarz, Emanuel"}],"name":{"displayForm":["Han Cao, Andreas Meyer-Lindenberg, Emanuel Schwarz (Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University)"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"29 October 2018"}],"title":[{"title_sort":"Comparative evaluation of machine learning strategies for analyzing big data in psychiatry","title":"Comparative evaluation of machine learning strategies for analyzing big data in psychiatry"}],"language":["eng"],"id":{"eki":["1590359275"],"doi":["10.3390/ijms19113387"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"relHost":[{"recId":"316340715","titleAlt":[{"title":"IJMS"}],"origin":[{"dateIssuedKey":"2000","publisherPlace":"Basel","publisher":"Molecular Diversity Preservation International","dateIssuedDisp":"2000-"}],"pubHistory":["1.2000 -"],"disp":"Comparative evaluation of machine learning strategies for analyzing big data in psychiatryInternational journal of molecular sciences","type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"title":[{"title_sort":"International journal of molecular sciences","title":"International journal of molecular sciences"}],"part":{"extent":"15","text":"Volume 19, issue 11 (2018) Artikel-Nummer 3387, Seite 1-15","year":"2018","issue":"11","volume":"19"},"note":["Gesehen am 17.09.20"],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2019364-6"],"issn":["1422-0067","1661-6596"],"eki":["316340715"]}}],"note":["Gesehen am 15.03.2019"],"physDesc":[{"extent":"15 S."}]} 
SRT |a CAOHANMEYECOMPARATIV2920