Analysis and Numerics for Conservation Laws

Wave Processes at Interfaces -- Numerics for Magnetoplasmadynamic Propulsion -- Hexagonal Kinetic Models and the Numerical Simulation of Kinetic Boundary Layers -- High-resolution Simulation of Detonations with Detailed Chemistry -- Numerical Linear Stability Analysis for Compressible Fluids -- Simu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Warnecke, Gerald (VerfasserIn)
Dokumenttyp: Edited Volume
Sprache:Englisch
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 2005
Schriftenreihe:SpringerLink Bücher
Volumes / Articles: Show Volumes / Articles.
DOI:10.1007/3-540-27907-5
Schlagworte:
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/3-540-27907-5
Resolving-System, lizenzpflichtig, Volltext: http://dx.doi.org/10.1007/3-540-27907-5
Cover: https://swbplus.bsz-bw.de/bsz276360303cov.jpg
Verlag, Zentralblatt MATH, Inhaltstext: https://zbmath.org/?q=an:1066.76006
Volltext
Verfasserangaben:edited by Gerald Warnecke

MARC

LEADER 00000cam a22000002c 4500
001 1646094662
003 DE-627
005 20250511182306.0
007 cr uuu---uuuuu
008 080118s2005 gw |||||o 00| ||eng c
020 |a 9783540279075  |9 978-3-540-27907-5 
024 7 |a 10.1007/3-540-27907-5  |2 doi 
035 |a (DE-627)1646094662 
035 |a (DE-576)276360303 
035 |a (DE-599)BSZ276360303 
035 |a (OCoLC)315764000 
035 |a (OCoLC)315764000 
035 |a (DE-627-1)038917408 
035 |a (ZBM)1066.76006 
035 |a (DE-He213)978-3-540-27907-5 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
044 |c XA-DE 
050 0 |a QA71-90 
050 0 |a QA377 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
082 0 |a 518 
082 0 |a 515/.353  |2 22 
082 0 4 |a 530 
084 |a 27  |2 sdnb 
084 |a 27  |2 sdnb 
084 |a SK 950  |q BVB  |2 rvk  |0 (DE-625)rvk/143273: 
084 |a *76-06  |2 msc 
084 |a 65-06  |2 msc 
084 |a 00B15  |2 msc 
084 |a 76Mxx  |2 msc 
084 |a 76Nxx  |2 msc 
084 |a 31.45  |2 bkl 
084 |a 31.76  |2 bkl 
100 1 |a Warnecke, Gerald  |d 1956-  |0 (DE-588)121539482  |0 (DE-627)081374038  |0 (DE-576)292762046  |4 aut 
245 1 0 |a Analysis and Numerics for Conservation Laws  |c edited by Gerald Warnecke 
264 1 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2005 
300 |a Online-Ressource (X, 542 p. 236 illus, digital) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 0 |a SpringerLink  |a Bücher 
500 |a Includes bibliographical references 
500 |a Research report 
520 |a Wave Processes at Interfaces -- Numerics for Magnetoplasmadynamic Propulsion -- Hexagonal Kinetic Models and the Numerical Simulation of Kinetic Boundary Layers -- High-resolution Simulation of Detonations with Detailed Chemistry -- Numerical Linear Stability Analysis for Compressible Fluids -- Simulation of Solar Radiative Magneto-Convection -- Riemann Problem for the Euler Equation with Non-Convex Equation of State including Phase Transitions -- Radiation Magnetohydrodynamics: Analysis for Model Problems and Efficient 3d-Simulations for the Full System -- Kinetic Schemes for Selected Initial and Boundary Value Problems -- A Local Level-Set Method under Involvement of Topological Aspects -- Hyperbolic Systems and Transport Equations in Mathematical Biology -- Travelling Waves in Systems of Hyperbolic Balance Laws -- The Role of the Jacobian in the Adaptive Discontinuous Galerkin Method for the Compressible Euler Equations -- The Multi-Scale Dust Formation in Substellar Atmospheres -- Meshless Methods for Conservation Laws -- Simulations of Turbulent Thermonuclear Burning in Type Ia Supernovae -- Hyperbolic GLM Scheme for Elliptic Constraints in Computational Electromagnetics and MHD -- Flexible Flame Structure Modelling in a Flame Front Tracking Scheme -- Riemann-Solver Free Schemes -- Relaxation Dynamics, Scaling Limits and Convergence of Relaxation Schemes -- Multidimensional Adaptive Staggered Grids -- On Hyperbolic Relaxation Problems. 
520 |a Whatdoasupernovaexplosioninouterspace,?owaroundanairfoil and knocking in combustion engines have in common? The physical and chemical mechanisms as well as the sizes of these processes are quite di?erent. So are the motivations for studying them scienti?cally. The super- 8 nova is a thermo-nuclear explosion on a scale of 10 cm. Astrophysicists try to understand them in order to get insight into fundamental properties of the universe. In ?ows around airfoils of commercial airliners at the scale of 3 10 cm shock waves occur that in?uence the stability of the wings as well as fuel consumption in ?ight. This requires appropriate design of the shape and structure of airfoils by engineers. Knocking occurs in combustion, a chemical 1 process, and must be avoided since it damages motors. The scale is 10 cm and these processes must be optimized for e?ciency and environmental conside- tions. The common thread is that the underlying ?uid ?ows may at a certain scale of observation be described by basically the same type of hyperbolic s- tems of partial di?erential equations in divergence form, called conservation laws. Astrophysicists, engineers and mathematicians share a common interest in scienti?c progress on theory for these equations and the development of computational methods for solutions of the equations. Due to their wide applicability in modeling of continua, partial di?erential equationsareamajor?eldofresearchinmathematics. Asubstantialportionof mathematical research is related to the analysis and numerical approximation of solutions to such equations. Hyperbolic conservation laws in two or more spacedimensionsstillposeoneofthemainchallengestomodernmathematics. 
650 0 |a Analysis (Mathematics). 
650 0 |a Computer mathematics. 
650 0 |a Fluid mechanics. 
650 0 |a Continuum physics. 
650 0 |a Mathematical analysis. 
650 0 |a Mathematics 
650 0 |a Global analysis (Mathematics) 
650 0 |a Computer science  |x Mathematics 
650 0 |a Numerical analysis 
650 0 |a Thermodynamics 
650 0 |a Astrophysics 
650 0 |a Hydraulic engineering 
655 7 |a Aufsatzsammlung  |0 (DE-588)4143413-4  |0 (DE-627)105605727  |0 (DE-576)209726091  |2 gnd-content 
689 0 0 |d s  |0 (DE-588)4496581-3  |0 (DE-627)242400922  |0 (DE-576)213036177  |a Hyperbolisches Differentialgleichungssystem  |2 gnd 
689 0 1 |d s  |0 (DE-588)4131214-4  |0 (DE-627)104653493  |0 (DE-576)209625511  |a Erhaltungssatz  |2 gnd 
689 0 2 |d s  |0 (DE-588)4313842-1  |0 (DE-627)126496641  |0 (DE-576)211158763  |a Analytische Lösung  |2 gnd 
689 0 |5 DE-101 
689 1 0 |d s  |0 (DE-588)4496581-3  |0 (DE-627)242400922  |0 (DE-576)213036177  |a Hyperbolisches Differentialgleichungssystem  |2 gnd 
689 1 1 |d s  |0 (DE-588)4131214-4  |0 (DE-627)104653493  |0 (DE-576)209625511  |a Erhaltungssatz  |2 gnd 
689 1 2 |d s  |0 (DE-588)4128130-5  |0 (DE-627)104653515  |0 (DE-576)209599480  |a Numerisches Verfahren  |2 gnd 
689 1 |5 DE-101 
689 2 0 |d s  |0 (DE-588)4496581-3  |0 (DE-627)242400922  |0 (DE-576)213036177  |a Hyperbolisches Differentialgleichungssystem  |2 gnd 
689 2 1 |d s  |0 (DE-588)4131214-4  |0 (DE-627)104653493  |0 (DE-576)209625511  |a Erhaltungssatz  |2 gnd 
689 2 2 |d s  |0 (DE-588)4313842-1  |0 (DE-627)126496641  |0 (DE-576)211158763  |a Analytische Lösung  |2 gnd 
689 2 |5 (DE-627) 
689 3 0 |d s  |0 (DE-588)4128130-5  |0 (DE-627)104653515  |0 (DE-576)209599480  |a Numerisches Verfahren  |2 gnd 
689 3 |5 (DE-627) 
776 1 |z 9783540248347 
776 0 8 |i Buchausg. u.d.T.  |t Analysis and numerics for conservation laws  |d Berlin : Springer, 2005  |h X, 542 S  |w (DE-627)485262576  |w (DE-576)117178616  |z 354024834X  |z 9783540248347 
856 4 0 |u https://doi.org/10.1007/3-540-27907-5  |m X:SPRINGER  |x Verlag  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://dx.doi.org/10.1007/3-540-27907-5  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 2 |u https://swbplus.bsz-bw.de/bsz276360303cov.jpg  |m V:DE-576  |m X:springer  |q image/jpeg  |v 20150820163506  |3 Cover 
856 4 2 |u https://zbmath.org/?q=an:1066.76006  |m B:ZBM  |v 2021-04-12  |x Verlag  |y Zentralblatt MATH  |3 Inhaltstext 
889 |w (DE-627)550056718 
912 |a ZDB-2-SEB 
912 |a ZDB-2-SXMS  |b 2005 
912 |a ZDB-2-SMA  |b 2005 
935 |h GBV  |i ExPruef 
936 r v |a SK 950  |b Mathematische Methoden in den Naturwissenschaften  |k Mathematik  |k Monografien  |k Mathematische Methoden in den Naturwissenschaften  |0 (DE-627)1270877593  |0 (DE-625)rvk/143273:  |0 (DE-576)200877593 
936 b k |a 31.45  |j Partielle Differentialgleichungen  |q SEPA  |0 (DE-627)10640816X 
936 b k |a 31.76  |j Numerische Mathematik  |q SEPA  |0 (DE-627)106408194 
951 |a BO 
990 |a Numerisches Verfahren 
990 |a Analytische Lösung 
990 |a Erhaltungssatz 
990 |a Hyperbolisches Differentialgleichungssystem 
990 |a Numerisches Verfahren 
990 |a Erhaltungssatz 
990 |a Hyperbolisches Differentialgleichungssystem 
990 |a Analytische Lösung 
990 |a Erhaltungssatz 
990 |a Hyperbolisches Differentialgleichungssystem 
992 |a 20180821 
999 |a KXP-PPN1646094662  |e 3316813462 
BIB |a Y 
SPR |a Y 
JSO |a {"physDesc":[{"extent":"Online-Ressource (X, 542 p. 236 illus, digital)"}],"type":{"media":"Online-Ressource","bibl":"book"},"note":["Includes bibliographical references","Research report"],"language":["eng"],"recId":"1646094662","name":{"displayForm":["edited by Gerald Warnecke"]},"person":[{"role":"aut","display":"Warnecke, Gerald","given":"Gerald","family":"Warnecke"}],"origin":[{"dateIssuedDisp":"2005","dateIssuedKey":"2005","publisher":"Springer Berlin Heidelberg","publisherPlace":"Berlin, Heidelberg"}],"title":[{"title":"Analysis and Numerics for Conservation Laws","title_sort":"Analysis and Numerics for Conservation Laws"}],"id":{"isbn":["9783540279075"],"eki":["1646094662"],"doi":["10.1007/3-540-27907-5"]}} 
SRT |a WARNECKEGEANALYSISAN2005