The mathematics of knots: theory and application

Preface -- 1 Knots, Singular Embeddings, and Monodromy -- 2 Lower Bounds on Virtual Crossing Number and Minimal Surface Genus -- 3 A Survey of Twisted Alexander Polynomials -- 4 On Two Categorifications of the Arrow Polynomial for Virtual Knots -- 5 An Adelic Extension of the Jones Polynomial -- 6 L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Banagl, Markus (HerausgeberIn) , Vogel, Denis (HerausgeberIn)
Dokumenttyp: Konferenzschrift
Sprache:Englisch
Veröffentlicht: Berlin, Heidelberg Springer-Verlag Berlin Heidelberg 2011
Schriftenreihe:Contributions in Mathematical and Computational Sciences 1
SpringerLink Bücher
DOI:10.1007/978-3-642-15637-3
Schlagworte:
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/978-3-642-15637-3
Resolving-System, lizenzpflichtig, Volltext: http://dx.doi.org/10.1007/978-3-642-15637-3
Verlag, Zentralblatt MATH, Inhaltstext: https://zbmath.org/?q=an:1205.57002
Volltext
Verfasserangaben:edited by Markus Banagl, Denis Vogel

MARC

LEADER 00000cam a22000002c 4500
001 1650617313
003 DE-627
005 20250517182212.0
007 cr uuu---uuuuu
008 101203s2011 gw |||||o 00| ||eng c
020 |a 9783642156373  |9 978-3-642-15637-3 
020 |a 1282996703  |c ebk  |9 1-282-99670-3 
020 |a 9781282996700  |c MyiLibrary  |9 978-1-282-99670-0 
024 7 |a 10.1007/978-3-642-15637-3  |2 doi 
035 |a (DE-627)1650617313 
035 |a (DE-576)334458404 
035 |a (DE-599)BSZ334458404 
035 |a (OCoLC)698521933 
035 |a (OCoLC)698521933 
035 |a (ZBM)1205.57002 
035 |a (DE-627-1)040388425 
035 |a (DE-He213)978-3-642-15637-3 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
044 |c XA-DE 
050 0 |a QA611-614.97 
050 0 |a QA612.2 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 |a 514.2242 
082 0 |a 514.224 
082 0 |a 514 
084 |a 27  |2 sdnb 
084 |a 27  |2 sdnb 
084 |a SK 300  |2 rvk  |0 (DE-625)rvk/143230: 
084 |a *57-06  |2 msc 
084 |a 57Q45  |2 msc 
084 |a 57M15  |2 msc 
084 |a 05C10  |2 msc 
084 |a 00B15  |2 msc 
084 |a 31.65  |2 bkl 
245 0 4 |a The mathematics of knots  |b theory and application  |c edited by Markus Banagl, Denis Vogel 
264 1 |a Berlin, Heidelberg  |b Springer-Verlag Berlin Heidelberg  |c 2011 
300 |a Online-Ressource (X, 364p. 20 illus. in color, digital) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 0 |a Contributions in Mathematical and Computational Sciences  |v 1 
490 0 |a SpringerLink  |a Bücher 
500 |a Description based upon print version of record 
505 8 |a Preface to the Series; Preface; Contents; Knots, Singular Embeddings, and Monodromy; Lower Bounds on Virtual Crossing Number and Minimal Surface Genus; A Survey of Twisted Alexander Polynomials; On Two Categorifications of the Arrow Polynomial for Virtual Knots; An Adelic Extension of the Jones Polynomial; Legendrian Grid Number One Knots and Augmentations of Their Differential Algebras; Embeddings of Four-valent Framed Graphs into 2-surfaces; Geometric Topology and Field Theory on 3-Manifolds; From Goeritz Matrices to Quasi-alternating Links; An Overview of Property 2R 
505 8 |a DNA, Knots and TanglesWorkshop Talks; 
520 |a Preface -- 1 Knots, Singular Embeddings, and Monodromy -- 2 Lower Bounds on Virtual Crossing Number and Minimal Surface Genus -- 3 A Survey of Twisted Alexander Polynomials -- 4 On Two Categorifications of the Arrow Polynomial for Virtual Knots -- 5 An Adelic Extension of the Jones Polynomial -- 6 Legendrian Grid Number One Knots and Augmentations of their Differential Algebras -- 7 Embeddings of Four-Valent Framed Graphs into 2-Surfaces -- 8 Geometric Topology and Field Theory on 3-Manifolds -- 9 From Goeritz Matrices to Quasi-Alternating Links -- 10 An Overview of Property 2R -- 11 DNA, Knots and Tangles. 
520 |a The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested in the topology of DNA strands. 
650 0 |a Mathematics 
650 0 |a Physiology  |x Mathematics 
650 0 |a Global differential geometry 
650 0 |a Cell aggregation  |x Mathematics 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 0 |a Differential geometry. 
650 0 |a Biomathematics. 
650 0 |a Physics. 
650 0 |a Topology 
650 4 |a Cell aggregation  |x Mathematics 
650 4 |a Global differential geometry 
650 4 |a Mathematics 
650 4 |a Physiology  |x Mathematics 
650 4 |a Topology 
655 7 |a Konferenzschrift  |y 2008  |z Heidelberg  |0 (DE-588)1071861417  |0 (DE-627)826484824  |0 (DE-576)433375485  |2 gnd-content 
689 0 0 |d s  |0 (DE-588)4164318-5  |0 (DE-627)105448362  |0 (DE-576)20988777X  |a Knotentheorie  |2 gnd 
689 0 |5 DE-101 
689 1 0 |d s  |0 (DE-588)4164318-5  |0 (DE-627)105448362  |0 (DE-576)20988777X  |a Knotentheorie  |2 gnd 
689 1 |5 (DE-627) 
700 1 |a Banagl, Markus  |d 1971-  |e Hrsg.  |0 (DE-588)132548232  |0 (DE-627)658065114  |0 (DE-576)185904351  |4 edt 
700 1 |a Vogel, Denis  |e Hrsg.  |0 (DE-588)1044498137  |0 (DE-627)77210641X  |0 (DE-576)397898177  |4 edt 
776 1 |z 9783642156366 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |t The mathematics of knots  |d Heidelberg : Springer, 2011  |h X, 357 S.  |w (DE-627)632843101  |w (DE-576)330551507  |z 9783642156366 
856 4 0 |u https://doi.org/10.1007/978-3-642-15637-3  |m X:SPRINGER  |x Verlag  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-15637-3  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 2 |u https://zbmath.org/?q=an:1205.57002  |m B:ZBM  |v 2021-04-12  |x Verlag  |y Zentralblatt MATH  |3 Inhaltstext 
889 |w (DE-627)641007086 
912 |a ZDB-2-SEB 
912 |a ZDB-2-SXMS  |b 2011 
912 |a ZDB-2-SMA  |b 2011 
935 |h GBV  |i ExPruef 
936 r v |a SK 300  |b Algebraische Topologie  |k Mathematik  |k Monografien  |k Topologie allgemein Allgemeine Lehrbücher  |k Algebraische Topologie  |0 (DE-627)1271492547  |0 (DE-625)rvk/143230:  |0 (DE-576)201492547 
936 b k |a 31.65  |j Mannigfaltigkeiten  |j Zellkomplexe  |q SEPA  |0 (DE-627)106407708 
951 |a BO 
990 |a Knotentheorie 
990 |a Knotentheorie 
992 |a 20210616 
993 |a Book 
994 |a 2011 
998 |g 1044498137  |a Vogel, Denis  |m 1044498137:Vogel, Denis  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PV1044498137  |e 110100PV1044498137  |e 110000PV1044498137  |e 110400PV1044498137  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 2  |y j 
998 |g 132548232  |a Banagl, Markus  |m 132548232:Banagl, Markus  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PB132548232  |e 110100PB132548232  |e 110000PB132548232  |e 110400PB132548232  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1650617313  |e 393887516X 
BIB |a Y 
JSO |a {"language":["eng"],"recId":"1650617313","physDesc":[{"extent":"Online-Ressource (X, 364p. 20 illus. in color, digital)"}],"type":{"media":"Online-Ressource","bibl":"edited-book"},"note":["Description based upon print version of record"],"person":[{"given":"Markus","family":"Banagl","role":"edt","display":"Banagl, Markus","roleDisplay":"Hrsg."},{"display":"Vogel, Denis","roleDisplay":"Hrsg.","role":"edt","family":"Vogel","given":"Denis"}],"name":{"displayForm":["edited by Markus Banagl, Denis Vogel"]},"id":{"doi":["10.1007/978-3-642-15637-3"],"eki":["1650617313"],"isbn":["9783642156373","1282996703","9781282996700"]},"origin":[{"publisherPlace":"Berlin, Heidelberg","dateIssuedDisp":"2011","dateIssuedKey":"2011","publisher":"Springer-Verlag Berlin Heidelberg"}],"title":[{"title_sort":"mathematics of knots","subtitle":"theory and application","title":"The mathematics of knots"}]} 
SRT |a MATHEMATIC2011