Elliptic Curves, Hilbert Modular Forms and Galois Deformations

Part I: Galois Deformations -- On p-adic Galois Representations -- Deformations of Galois Representations -- Part II: Hilbert Modular Forms -- Arithmetic Aspects of Hilbert Modular Forms and Varieties -- Explicit Methods for Hilbert Modular Forms -- Part III: Elliptic Curves -- Notes on the Parity C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Berger, Laurent (VerfasserIn)
Weitere Verfasser: Böckle, Gebhard (BerichterstatterIn) , Dembélé, Lassina (BerichterstatterIn) , Dimitrov, Mladen (BerichterstatterIn) , Dokchitser, Tim (BerichterstatterIn) , Voight, John (BerichterstatterIn)
Dokumenttyp: Buch/Monographie
Sprache:Englisch
Veröffentlicht: Basel Birkhäuser 2013
Schriftenreihe:Advanced Courses in Mathematics - CRM Barcelona
SpringerLink Bücher
DOI:10.1007/978-3-0348-0618-3
Schlagworte:
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/978-3-0348-0618-3
Cover: https://swbplus.bsz-bw.de/bsz38684495xcov.jpg
Verlag, Zentralblatt MATH, Inhaltstext: https://zbmath.org/?q=an:1276.11004
Volltext
Verfasserangaben:by Laurent Berger, Gebhard Böckle, Lassina Dembélé, Mladen Dimitrov, Tim Dokchitser, John Voight

MARC

LEADER 00000cam a22000002c 4500
001 1652500987
003 DE-627
005 20250117000155.0
007 cr uuu---uuuuu
008 130705s2013 sz |||||o 00| ||eng c
020 |a 9783034806183  |9 978-3-0348-0618-3 
024 7 |a 10.1007/978-3-0348-0618-3  |2 doi 
035 |a (DE-627)1652500987 
035 |a (DE-576)38684495X 
035 |a (DE-599)BSZ38684495X 
035 |a (OCoLC)855544072 
035 |a (DE-605)TT050421597 
035 |a (ZBM)1276.11004 
035 |a (DE-He213)978-3-0348-0618-3 
035 |a (DE-627-1)040592898 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
044 |c XA-CH 
050 0 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 |a 512.7 
084 |a 27  |2 sdnb 
084 |a 27  |2 sdnb 
084 |a SK 180  |q SEPA  |2 rvk  |0 (DE-625)rvk/143222: 
084 |a *11-06  |2 msc 
084 |a 00B15  |2 msc 
100 1 |a Berger, Laurent  |d 1976-  |0 (DE-588)141767170  |0 (DE-627)70405891X  |0 (DE-576)325820090  |4 aut 
245 1 0 |a Elliptic Curves, Hilbert Modular Forms and Galois Deformations  |c by Laurent Berger, Gebhard Böckle, Lassina Dembélé, Mladen Dimitrov, Tim Dokchitser, John Voight 
264 1 |a Basel  |b Birkhäuser  |c 2013 
300 |a Online-Ressource (XII, 249 p. 11 illus., 2 illus. in color, online resource) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 0 |a Advanced Courses in Mathematics - CRM Barcelona 
490 0 |a SpringerLink  |a Bücher 
520 |a Part I: Galois Deformations -- On p-adic Galois Representations -- Deformations of Galois Representations -- Part II: Hilbert Modular Forms -- Arithmetic Aspects of Hilbert Modular Forms and Varieties -- Explicit Methods for Hilbert Modular Forms -- Part III: Elliptic Curves -- Notes on the Parity Conjecture. 
520 |a The notes in this volume correspond to advanced courses held at the Centre de Recerca Matemàtica as part of the research program in Arithmetic Geometry in the 2009-2010 academic year. The notes by Laurent Berger provide an introduction to p-adic Galois representations and Fontaine rings, which are especially useful for describing many local deformation rings at p that arise naturally in Galois deformation theory. The notes by Gebhard Böckle offer a comprehensive course on Galois deformation theory, starting from the foundational results of Mazur and discussing in detail the theory of pseudo-representations and their deformations, local deformations at places l ≠ p and local deformations at p which are flat. In the last section,the results of Böckle and Kisin on presentations of global deformation rings over local ones are discussed. The notes by Mladen Dimitrov present the basics of the arithmetic theory of Hilbert modular forms and varieties, with an emphasis on the study of the images of the attached Galois representations, on modularity lifting theorems over totally real number fields, and on the cohomology of Hilbert modular varieties with integral coefficients. The notes by Lassina Dembélé and John Voight describe methods for performing explicit computations in spaces of Hilbert modular forms. These methods depend on the Jacquet-Langlands correspondence and on computations in spaces of quaternionic modular forms, both for the case of definite and indefinite quaternion algebras. Several examples are given, and applications to modularity of Galois representations are discussed. The notes by Tim Dokchitser describe the proof, obtained by the author in a joint project with Vladimir Dokchitser, of the parity conjecture for elliptic curves over number fields under the assumption of finiteness of the Tate-Shafarevich group. The statement of the Birch and Swinnerton-Dyer conjecture is included, as well as a detailed study of local and global root numbers of elliptic curves and their classification. 
650 0 |a Geometry, algebraic 
650 0 |a Mathematics 
650 0 |a Algebra 
650 0 |a Number theory 
650 0 |a Algebraic geometry. 
689 0 0 |d s  |0 (DE-588)4014487-2  |0 (DE-627)106339966  |0 (DE-576)208908013  |a Elliptische Kurve  |2 gnd 
689 0 1 |d s  |0 (DE-588)4001156-2  |0 (DE-627)106398253  |0 (DE-576)208841504  |a Algebra  |2 gnd 
689 0 2 |d s  |0 (DE-588)4001161-6  |0 (DE-627)106398237  |0 (DE-576)208841520  |a Algebraische Geometrie  |2 gnd 
689 0 3 |d s  |0 (DE-588)4067277-3  |0 (DE-627)106109472  |0 (DE-576)209169265  |a Zahlentheorie  |2 gnd 
689 0 |5 (DE-627) 
689 1 0 |d s  |0 (DE-588)4155901-0  |0 (DE-627)105512362  |0 (DE-576)209822767  |a Galois-Theorie  |2 gnd 
689 1 |5 (DE-627) 
689 2 0 |d s  |0 (DE-588)4128299-1  |0 (DE-627)105718351  |0 (DE-576)209600926  |a Modulform  |2 gnd 
689 2 |5 (DE-627) 
700 1 |a Böckle, Gebhard  |d 1964-  |0 (DE-588)1052651798  |0 (DE-627)788915908  |0 (DE-576)408431660  |4 oth 
700 1 |a Dembélé, Lassina  |4 oth 
700 1 |a Dimitrov, Mladen  |4 oth 
700 1 |a Dokchitser, Tim  |4 oth 
700 1 |8 1\p  |a Voight, John  |0 (DE-588)1237069327  |0 (DE-627)1762974932  |4 oth 
776 1 |z 9783034806176 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |t Elliptic curves, Hilbert modular forms and Galois deformations  |d Basel : Birkhäuser, 2013  |h XII, 249 S.  |w (DE-627)1603609229  |w (DE-576)383871239  |z 9783034806176  |z 3034806175 
856 4 0 |u https://doi.org/10.1007/978-3-0348-0618-3  |m X:SPRINGER  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 2 |u https://swbplus.bsz-bw.de/bsz38684495xcov.jpg  |m V:DE-576  |m X:springer  |q image/jpeg  |v 20140212094404  |3 Cover 
856 4 2 |u https://zbmath.org/?q=an:1276.11004  |m B:ZBM  |v 2021-04-12  |x Verlag  |y Zentralblatt MATH  |3 Inhaltstext 
883 |8 1\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
889 |w (DE-627)751256544 
912 |a ZDB-2-SEB 
912 |a ZDB-2-SMA  |b 2013 
912 |a ZDB-2-SXMS  |b 2013 
936 r v |a SK 180  |b Zahlentheorie  |k Mathematik  |k Monografien  |k Zahlentheorie  |0 (DE-627)1270877496  |0 (DE-625)rvk/143222:  |0 (DE-576)200877496 
951 |a BO 
990 |a Modulform 
990 |a Galois-Theorie 
990 |a Zahlentheorie 
990 |a Algebraische Geometrie 
990 |a Algebra 
990 |a Elliptische Kurve 
992 |a 20160909 
993 |a Book 
994 |a 2013 
998 |g 1052651798  |a Böckle, Gebhard  |m 1052651798:Böckle, Gebhard  |d 110000  |d 110100  |d 110000  |d 110400  |d 700000  |d 708000  |e 110000PB1052651798  |e 110100PB1052651798  |e 110000PB1052651798  |e 110400PB1052651798  |e 700000PB1052651798  |e 708000PB1052651798  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |k 0/700000/  |k 1/700000/708000/  |p 2 
999 |a KXP-PPN1652500987  |e 3360504739 
BIB |a Y 
JSO |a {"name":{"displayForm":["by Laurent Berger, Gebhard Böckle, Lassina Dembélé, Mladen Dimitrov, Tim Dokchitser, John Voight"]},"person":[{"family":"Berger","given":"Laurent","role":"aut","display":"Berger, Laurent"},{"given":"Gebhard","family":"Böckle","role":"oth","display":"Böckle, Gebhard"},{"display":"Dembélé, Lassina","role":"oth","given":"Lassina","family":"Dembélé"},{"given":"Mladen","family":"Dimitrov","role":"oth","display":"Dimitrov, Mladen"},{"family":"Dokchitser","given":"Tim","display":"Dokchitser, Tim","role":"oth"},{"display":"Voight, John","role":"oth","family":"Voight","given":"John"}],"type":{"media":"Online-Ressource","bibl":"book"},"physDesc":[{"extent":"Online-Ressource (XII, 249 p. 11 illus., 2 illus. in color, online resource)"}],"language":["eng"],"origin":[{"dateIssuedDisp":"2013","publisherPlace":"Basel","dateIssuedKey":"2013","publisher":"Birkhäuser"}],"recId":"1652500987","id":{"doi":["10.1007/978-3-0348-0618-3"],"eki":["1652500987"],"isbn":["9783034806183"]},"title":[{"title":"Elliptic Curves, Hilbert Modular Forms and Galois Deformations","title_sort":"Elliptic Curves, Hilbert Modular Forms and Galois Deformations"}]} 
SRT |a BERGERLAURELLIPTICCU2013