Cohomology of Number Fields

This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Neukirch, Jürgen (VerfasserIn) , Schmidt, Alexander (VerfasserIn) , Wingberg, Kay (VerfasserIn)
Dokumenttyp: Buch/Monographie
Sprache:Englisch
Veröffentlicht: Berlin, Heidelberg Springer 2008
Ausgabe:Second Edition
Schriftenreihe:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 323
SpringerLink Bücher
Springer eBook Collection Mathematics and Statistics
DOI:10.1007/978-3-540-37889-1
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/978-3-540-37889-1
Verlag, Inhaltsverzeichnis: http://d-nb.info/980792630/04
Verlag, Zentralblatt MATH, Inhaltstext: https://zbmath.org/?q=an:1136.11001
Volltext
Verfasserangaben:by Jürgen Neukirch, Alexander Schmidt, Kay Wingberg

MARC

LEADER 00000cam a22000002c 4500
001 1653030127
003 DE-627
005 20250117000328.0
007 cr uuu---uuuuu
008 131022s2008 gw |||||o 00| ||eng c
020 |a 9783540378891  |9 978-3-540-37889-1 
024 7 |a 10.1007/978-3-540-37889-1  |2 doi 
035 |a (DE-627)1653030127 
035 |a (DE-576)394569814 
035 |a (DE-599)BSZ394569814 
035 |a (OCoLC)862985641 
035 |a (ZBM)1136.11001 
035 |a (DE-He213)978-3-540-37889-1 
035 |a (DE-627-1)038962969 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
044 |c XA-DE 
050 0 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 |a 512.7 
084 |a 27  |2 sdnb 
084 |a *11-02  |2 msc 
084 |a 11R34  |2 msc 
084 |a 11R23  |2 msc 
084 |a 11S25  |2 msc 
084 |a 18G10  |2 msc 
084 |a 18G20  |2 msc 
084 |a 20J05  |2 msc 
084 |a 11R37  |2 msc 
100 1 |a Neukirch, Jürgen  |d 1937-1997  |0 (DE-588)117716839  |0 (DE-627)079133398  |0 (DE-576)162366264  |4 aut 
245 1 0 |a Cohomology of Number Fields  |c by Jürgen Neukirch, Alexander Schmidt, Kay Wingberg 
250 |a Second Edition 
264 1 |a Berlin, Heidelberg  |b Springer  |c 2008 
300 |a Online-Ressource (XV, 826 p, online resource) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics  |v 323 
490 0 |a SpringerLink  |a Bücher 
490 0 |a Springer eBook Collection  |a Mathematics and Statistics 
520 |a This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields. 
520 |a The second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. The first part provides algebraic background: cohomology of profinite groups, duality groups, free products, and homotopy theory of modules, with new sections on spectral sequences and on Tate cohomology of profinite groups. The second part deals with Galois groups of local and global fields: Tate duality, structure of absolute Galois groups of local fields, extensions with restricted ramification, Poitou-Tate duality, Hasse principles, theorem of Grunwald-Wang, Leopoldt’s conjecture, Riemann’s existence theorem, the theorems of Iwasawa and of Šafarevic on solvable groups as Galois groups, Iwasawa theory, and anabelian principles. New material is introduced here on duality theorems for unramified and tamely ramified extensions, a careful analysis of 2-extensions of real number fields and a complete proof of Neukirch’s theorem on solvable Galois groups with given local conditions. The present edition is a corrected printing of the 2008 edition 
650 0 |a Geometry, algebraic 
650 0 |a Mathematics 
650 0 |a Group theory 
650 0 |a Number theory 
650 0 |a Algebraic geometry. 
700 1 |a Schmidt, Alexander  |d 1965-  |0 (DE-588)132996952  |0 (DE-627)530080079  |0 (DE-576)299553752  |4 aut 
700 1 |a Wingberg, Kay  |d 1949-  |0 (DE-588)142700975  |0 (DE-627)704291282  |0 (DE-576)163587728  |4 aut 
776 1 |z 9783540378884 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9783540378884 
856 4 0 |u https://doi.org/10.1007/978-3-540-37889-1  |m X:SPRINGER  |x Verlag  |z lizenzpflichtig  |3 Volltext 
856 4 2 |u http://d-nb.info/980792630/04  |m B:DE-101  |q application/pdf  |v 20130501  |x Verlag  |3 Inhaltsverzeichnis 
856 4 2 |u https://zbmath.org/?q=an:1136.11001  |m B:ZBM  |v 2021-04-12  |x Verlag  |y Zentralblatt MATH  |3 Inhaltstext 
889 |w (DE-627)769206581 
912 |a ZDB-2-SEB 
912 |a ZDB-2-SMA  |b 2008 
912 |a ZDB-2-SXMS  |b 2008 
951 |a BO 
992 |a 20160902 
993 |a Book 
994 |a 2008 
998 |g 142700975  |a Wingberg, Kay  |m 142700975:Wingberg, Kay  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PW142700975  |e 110100PW142700975  |e 110000PW142700975  |e 110400PW142700975  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 3  |y j 
998 |g 132996952  |a Schmidt, Alexander  |m 132996952:Schmidt, Alexander  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PS132996952  |e 110100PS132996952  |e 110000PS132996952  |e 110400PS132996952  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 2 
999 |a KXP-PPN1653030127  |e 336223349X 
BIB |a Y 
JSO |a {"physDesc":[{"extent":"Online-Ressource (XV, 826 p, online resource)"}],"type":{"bibl":"book","media":"Online-Ressource"},"language":["eng"],"recId":"1653030127","origin":[{"dateIssuedKey":"2008","publisherPlace":"Berlin, Heidelberg","edition":"Second Edition","editionNo":2,"dateIssuedDisp":"2008","publisher":"Springer"}],"title":[{"title":"Cohomology of Number Fields","title_sort":"Cohomology of Number Fields"}],"id":{"isbn":["9783540378891"],"eki":["1653030127"],"doi":["10.1007/978-3-540-37889-1"]},"person":[{"display":"Neukirch, Jürgen","role":"aut","family":"Neukirch","given":"Jürgen"},{"family":"Schmidt","given":"Alexander","display":"Schmidt, Alexander","role":"aut"},{"family":"Wingberg","given":"Kay","display":"Wingberg, Kay","role":"aut"}],"name":{"displayForm":["by Jürgen Neukirch, Alexander Schmidt, Kay Wingberg"]}} 
SRT |a NEUKIRCHJUCOHOMOLOGY2008