Arithmetic Geometry over Global Function Fields

This volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009-2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the arithmetic of L-functions (and other special functions), inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Böckle, Gebhard (VerfasserIn)
Weitere Verfasser: Burns, David (BerichterstatterIn) , Goss, David (BerichterstatterIn) , Thakur, Dinesh (BerichterstatterIn) , Trihan, Fabien (BerichterstatterIn, HerausgeberIn) , Ulmer, Douglas (BerichterstatterIn) , Bars, Francesc (HerausgeberIn) , Longhi, Ignazio (HerausgeberIn)
Dokumenttyp: Buch/Monographie
Sprache:Englisch
Veröffentlicht: Basel Birkhäuser 2014
Schriftenreihe:Advanced Courses in Mathematics - CRM Barcelona
SpringerLink Bücher
Springer eBook Collection Mathematics and Statistics
Volumes / Articles: Show Volumes / Articles.
DOI:10.1007/978-3-0348-0853-8
Schlagworte:
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/978-3-0348-0853-8
Cover: https://swbplus.bsz-bw.de/bsz42033100xcov.jpg
Verlag, Zentralblatt MATH, Inhaltstext: https://zbmath.org/?q=an:1305.11001
Volltext
Verfasserangaben:by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan

MARC

LEADER 00000cam a22000002c 4500
001 1653767669
003 DE-627
005 20250117000611.0
007 cr uuu---uuuuu
008 141202s2014 sz |||||o 00| ||eng c
020 |a 9783034808538  |9 978-3-0348-0853-8 
024 7 |a 10.1007/978-3-0348-0853-8  |2 doi 
035 |a (DE-627)1653767669 
035 |a (DE-576)42033100X 
035 |a (DE-599)BSZ42033100X 
035 |a (OCoLC)899614413 
035 |a (OCoLC)1015871396 
035 |a (ZBM)1305.11001 
035 |a (DE-He213)978-3-0348-0853-8 
035 |a (DE-627-1)04059291X 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
044 |c XA-CH 
050 0 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 |a 512.7 
084 |a 27  |2 sdnb 
084 |a *11-06  |2 msc 
084 |a 14-06  |2 msc 
084 |a 11R58  |2 msc 
084 |a 14H05  |2 msc 
084 |a 11G10  |2 msc 
084 |a 11G40  |2 msc 
084 |a 11J93  |2 msc 
084 |a 11R23  |2 msc 
084 |a 14F05  |2 msc 
084 |a 14F30  |2 msc 
084 |a 14G10  |2 msc 
084 |a 00B25  |2 msc 
100 1 |a Böckle, Gebhard  |d 1964-  |0 (DE-588)1052651798  |0 (DE-627)788915908  |0 (DE-576)408431660  |4 aut 
245 1 0 |a Arithmetic Geometry over Global Function Fields  |c by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan 
264 1 |a Basel  |b Birkhäuser  |c 2014 
300 |a Online-Ressource (XIV, 337 p, online resource) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 0 |a Advanced Courses in Mathematics - CRM Barcelona 
490 0 |a SpringerLink  |a Bücher 
490 0 |a Springer eBook Collection  |a Mathematics and Statistics 
520 |a This volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009-2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the arithmetic of L-functions (and other special functions), investigated in various aspects. Three courses examine some of the most important recent ideas in the positive characteristic theory discovered by Goss (a field in tumultuous development, which is seeing a number of spectacular advances): they cover respectively crystals over function fields (with a number of applications to L-functions of t-motives), gamma and zeta functions in characteristic p, and the binomial theorem. The other two are focused on topics closer to the classical theory of abelian varieties over number fields: they give respectively a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell-Weil groups of high rank) and a state of the art survey of Geometric Iwasawa Theory explaining the recent proofs of various versions of the Main Conjecture, in the commutative and non-commutative settings 
650 0 |a Mathematics 
650 0 |a Geometry, algebraic 
650 0 |a Algebra 
650 0 |a Number theory 
650 0 |a Algebraic geometry. 
689 0 0 |d s  |0 (DE-588)4141850-5  |0 (DE-627)105617296  |0 (DE-576)20971462X  |a Algebraischer Funktionenkörper  |2 gnd 
689 0 1 |d s  |0 (DE-588)4137026-0  |0 (DE-627)10565311X  |0 (DE-576)209674164  |a L-Funktion  |2 gnd 
689 0 2 |d s  |0 (DE-588)4190764-4  |0 (DE-627)104558024  |0 (DE-576)21006899X  |a Zetafunktion  |2 gnd 
689 0 3 |d s  |0 (DE-588)4131383-5  |0 (DE-627)105695424  |0 (DE-576)209626852  |a Arithmetische Geometrie  |2 gnd 
689 0 |5 DE-101 
700 1 |a Burns, David  |d 1963-  |0 (DE-588)17372132X  |0 (DE-627)698627423  |0 (DE-576)134562461  |4 oth 
700 1 |8 1\p  |a Goss, David  |d 1952-2017  |0 (DE-588)172102227  |0 (DE-627)697013618  |0 (DE-576)132975327  |4 oth 
700 1 |a Thakur, Dinesh  |4 oth 
700 1 |a Trihan, Fabien  |4 oth 
700 1 |8 2\p  |a Ulmer, Douglas  |d 1960-  |0 (DE-588)122199350X  |0 (DE-627)1740423399  |4 oth 
700 1 |a Bars, Francesc  |e Hrsg.  |4 edt 
700 1 |a Longhi, Ignazio  |e Hrsg.  |4 edt 
700 1 |a Trihan, Fabien  |e Hrsg.  |4 edt 
776 1 |z 9783034808521 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |t Arithmetic geometry over global function fields  |d Basel : Birkhäuser, 2014  |h XIV, 337 S.  |w (DE-627)1613088663  |w (DE-576)425318141  |z 9783034808521 
856 4 0 |u https://doi.org/10.1007/978-3-0348-0853-8  |m X:SPRINGER  |x Verlag  |z lizenzpflichtig  |3 Volltext 
856 4 2 |u https://swbplus.bsz-bw.de/bsz42033100xcov.jpg  |m V:DE-576  |m X:springer  |q image/jpeg  |v 20150227130516  |3 Cover 
856 4 2 |u https://zbmath.org/?q=an:1305.11001  |m B:ZBM  |v 2021-04-12  |x Verlag  |y Zentralblatt MATH  |3 Inhaltstext 
883 |8 1\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
889 |w (DE-627)807021407 
912 |a ZDB-2-SEB 
912 |a ZDB-2-SMA  |b 2014 
912 |a ZDB-2-SXMS  |b 2014 
951 |a BO 
990 |a Arithmetische Geometrie 
990 |a Zetafunktion 
990 |a L-Funktion 
990 |a Algebraischer Funktionenkörper 
992 |a 20150205 
999 |a KXP-PPN1653767669  |e 3368374745 
BIB |a Y 
SPR |a Y 
JSO |a {"recId":"1653767669","origin":[{"publisherPlace":"Basel","dateIssuedKey":"2014","dateIssuedDisp":"2014","publisher":"Birkhäuser"}],"id":{"isbn":["9783034808538"],"eki":["1653767669"],"doi":["10.1007/978-3-0348-0853-8"]},"title":[{"title":"Arithmetic Geometry over Global Function Fields","title_sort":"Arithmetic Geometry over Global Function Fields"}],"language":["eng"],"type":{"bibl":"book","media":"Online-Ressource"},"physDesc":[{"extent":"Online-Ressource (XIV, 337 p, online resource)"}],"person":[{"role":"aut","display":"Böckle, Gebhard","given":"Gebhard","family":"Böckle"},{"role":"oth","display":"Burns, David","family":"Burns","given":"David"},{"family":"Goss","given":"David","role":"oth","display":"Goss, David"},{"given":"Dinesh","family":"Thakur","display":"Thakur, Dinesh","role":"oth"},{"family":"Trihan","given":"Fabien","display":"Trihan, Fabien","role":"oth"},{"display":"Ulmer, Douglas","role":"oth","family":"Ulmer","given":"Douglas"},{"given":"Francesc","family":"Bars","role":"edt","display":"Bars, Francesc","roleDisplay":"Hrsg."},{"given":"Ignazio","family":"Longhi","roleDisplay":"Hrsg.","display":"Longhi, Ignazio","role":"edt"},{"family":"Trihan","given":"Fabien","role":"edt","display":"Trihan, Fabien","roleDisplay":"Hrsg."}],"name":{"displayForm":["by Gebhard Böckle, David Burns, David Goss, Dinesh Thakur, Fabien Trihan, Douglas Ulmer; edited by Francesc Bars, Ignazio Longhi, Fabien Trihan"]}} 
SRT |a BOECKLEGEBARITHMETIC2014