Learning the likelihood: using deepInference for the estimation of diffusion-model and Lévy flight parameters [dataset]

In the corresponding paper, we use the recently develop DeepInference architecture as a general likelihood-free method to estimate parameters of cognitive models. DeepInference is a machine-learning algorithm based on the training of convolutional neural networks. In a first step, the network has to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Voß, Andreas (VerfasserIn) , Mertens, Ulf K. (VerfasserIn) , Radev, Stefan (VerfasserIn)
Dokumenttyp: Datenbank Forschungsdaten
Sprache:Englisch
Veröffentlicht: Heidelberg Universität 2018-06-22
DOI:10.11588/data/HY4OBJ
Schlagworte:
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.11588/data/HY4OBJ
Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/HY4OBJ
Volltext
Verfasserangaben:Andreas Voss, Ulf K. Mertens, Stefan T. Radev

MARC

LEADER 00000cmi a2200000 c 4500
001 1654144010
003 DE-627
005 20201029114522.0
006 su| d|o |0 |0
007 cr uuu---uuuuu
008 180702c20189999xx |o | eng c
024 7 |a 10.11588/data/HY4OBJ  |2 doi 
024 8 |a Vo-1288-2  |q Grant number 
035 |a (DE-627)1654144010 
035 |a (DE-576)507149998 
035 |a (DE-599)BSZ507149998 
035 |a (OCoLC)1047856508 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 11  |2 sdnb 
100 1 |a Voß, Andreas  |d 1972-  |e VerfasserIn  |0 (DE-588)1028372574  |0 (DE-627)730618919  |0 (DE-576)375905065  |4 aut 
245 1 0 |a Learning the likelihood  |b using deepInference for the estimation of diffusion-model and Lévy flight parameters [dataset]  |c Andreas Voss, Ulf K. Mertens, Stefan T. Radev 
264 1 |a Heidelberg  |b Universität  |c 2018-06-22 
300 |a 1 Online-Ressource (5 Files) 
336 |a Computerdaten  |b cod  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 02.07.2018 
500 |a Deposit date: 2018-06-21 
500 |a Grant information: Deutsche Forschungsgemeinschaft (DFG): Vo-1288-2 
520 |a In the corresponding paper, we use the recently develop DeepInference architecture as a general likelihood-free method to estimate parameters of cognitive models. DeepInference is a machine-learning algorithm based on the training of convolutional neural networks. In a first step, the network has to be trained with simulated data to learn the relation of parameters and data. Then, the trained network can be used to re-estimate parameters for real data. The efficiency and robustness of this approach was tested for two decision models based on continuous evidence accumulation. Study 1 investigated the recovery of parameters of the diffusion model, and Study 2 addressed the same question for a Lévy-Flight model. Results demonstrate that the machine-learning approach is superior to traditional multidimensional search algorithms that maximize the likelihood, both in terms of correlations of estimated parameters with true parameters and with regard to absolute deviations. The new approach also excels the maximum likelihood based search pertaining the robustness in the presence of contaminated data. 
655 7 |a Forschungsdaten  |0 (DE-588)1098579690  |0 (DE-627)857755366  |0 (DE-576)469182156  |2 gnd-content 
655 7 |a Datenbank  |0 (DE-588)4011119-2  |0 (DE-627)106354256  |0 (DE-576)208891943  |2 gnd-content 
700 1 |a Mertens, Ulf K.  |d 1989-  |e VerfasserIn  |0 (DE-588)1147723338  |0 (DE-627)1006745602  |0 (DE-576)414122860  |4 aut 
700 1 |a Radev, Stefan  |d 1993-  |e VerfasserIn  |0 (DE-588)1155312392  |0 (DE-627)1016724993  |0 (DE-576)501536248  |4 aut 
856 4 0 |u http://dx.doi.org/10.11588/data/HY4OBJ  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/HY4OBJ  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a BO 
992 |a 20180702 
993 |a ResearchData 
994 |a 2017 
998 |g 1155312392  |a Radev, Stefan  |m 1155312392:Radev, Stefan  |d 100000  |d 100200  |e 100000PR1155312392  |e 100200PR1155312392  |k 0/100000/  |k 1/100000/100200/  |p 3 
998 |g 1147723338  |a Mertens, Ulf K.  |m 1147723338:Mertens, Ulf K.  |d 100000  |d 100200  |e 100000PM1147723338  |e 100200PM1147723338  |k 0/100000/  |k 1/100000/100200/  |p 2 
998 |g 1028372574  |a Voß, Andreas  |m 1028372574:Voß, Andreas  |d 100000  |d 100200  |e 100000PV1028372574  |e 100200PV1028372574  |k 0/100000/  |k 1/100000/100200/  |p 1  |x j 
999 |a KXP-PPN1654144010  |e 3372277406 
BIB |a Y 
JSO |a {"type":{"bibl":"dataset","media":"Online-Ressource"},"recId":"1654144010","note":["Gesehen am 02.07.2018","Deposit date: 2018-06-21","Grant information: Deutsche Forschungsgemeinschaft (DFG): Vo-1288-2"],"language":["eng"],"person":[{"display":"Voß, Andreas","given":"Andreas","roleDisplay":"VerfasserIn","role":"aut","family":"Voß"},{"family":"Mertens","display":"Mertens, Ulf K.","role":"aut","roleDisplay":"VerfasserIn","given":"Ulf K."},{"family":"Radev","display":"Radev, Stefan","roleDisplay":"VerfasserIn","role":"aut","given":"Stefan"}],"id":{"doi":["10.11588/data/HY4OBJ"],"eki":["1654144010"]},"name":{"displayForm":["Andreas Voss, Ulf K. Mertens, Stefan T. Radev"]},"origin":[{"dateIssuedKey":"2018","publisherPlace":"Heidelberg","publisher":"Universität","dateIssuedDisp":"2018-06-22"}],"physDesc":[{"extent":"1 Online-Ressource (5 Files)"}],"title":[{"subtitle":"using deepInference for the estimation of diffusion-model and Lévy flight parameters [dataset]","title":"Learning the likelihood","title_sort":"Learning the likelihood"}]} 
SRT |a VOSSANDREALEARNINGTH2018