Learning model discrepancy of an electric motor with Bayesian inference

Uncertainty Quantification (UQ) is highly requested in computational modeling and simulation, especially in an industrial context. With the continuous evolution of modern complex systems demands on quality and reliability of simulation models increase. A main challenge is related to the fact that th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: John, David (VerfasserIn) , Schick, Michael (VerfasserIn) , Heuveline, Vincent (VerfasserIn)
Dokumenttyp: Buch/Monographie
Sprache:Englisch
Veröffentlicht: Heidelberg Univ.-Bibliothek August 23, 2018
Schriftenreihe:Preprint series of the Engineering Mathematics and Computing Lab (EMCL) Preprint no. 2018-01
In: Preprint series of the Engineering Mathematics and Computing Lab (EMCL) (Preprint no. 2018-01)

DOI:10.11588/emclpp.2018.1.51320
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.11588/emclpp.2018.1.51320
Verlag, Volltext: https://journals.ub.uni-heidelberg.de/index.php/emcl-pp/article/view/51320
Verlag, kostenfrei, Volltext: https://doi.org/10.11588/emclpp.2017.7.43398
Verlag, kostenfrei, Volltext: http://nbn-resolving.de/urn:nbn:de:bsz:16-emclpp-433989
Volltext
Verfasserangaben:David John, Michael Schick, Vincent Heuveline

MARC

LEADER 00000cam a2200000 c 4500
001 1655382659
003 DE-627
005 20200723100244.0
007 cr uuu---uuuuu
008 180829s2018 xx |||||o 00| ||eng c
024 7 |a urn:nbn:de:bsz:16-emclpp-433989  |2 urn 
024 7 |a 10.11588/emclpp.2018.1.51320  |2 doi 
035 |a (DE-627)1655382659 
035 |a (DE-576)510523420 
035 |a (DE-599)BSZ510523420 
035 |a (OCoLC)1050691083 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a John, David  |d 1990-  |e VerfasserIn  |0 (DE-588)1165748789  |0 (DE-627)1029818088  |0 (DE-576)510523404  |4 aut 
245 1 0 |a Learning model discrepancy of an electric motor with Bayesian inference  |c David John, Michael Schick, Vincent Heuveline 
264 1 |a Heidelberg  |b Univ.-Bibliothek  |c August 23, 2018 
300 |a 1 Online-Ressource (23 Seiten) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 1 |a Preprint series of the Engineering Mathematics and Computing Lab (EMCL)  |v Preprint no. 2018-01 
500 |a Gesehen am 29.08.2018 
520 |a Uncertainty Quantification (UQ) is highly requested in computational modeling and simulation, especially in an industrial context. With the continuous evolution of modern complex systems demands on quality and reliability of simulation models increase. A main challenge is related to the fact that the considered computational models are rarely able to represent the true physics perfectly and demonstrate a discrepancy compared to measurement data. Further, an accurate knowledge of considered model parameters is usually not available. E.g. fluctuations in manufacturing processes of hardware components or noise in sensors introduce uncertainties which must be quantified in an appropriate way. Mathematically, such UQ tasks are posed as inverse problems, requiring efficient methods to solve. A popular approach for UQ in inverse problems is Bayesian inference. This work investigates the influence of model discrepancies onto the calibration of physical model parameters and further considers a Bayesian inference framework including an attempt to correct for model discrepancy by an additional term. A Markov Chain Monte Carlo (MCMC) method is utilized to approximate the posterior distribution. A polynomial expansion with unknown coefficients is used to approximate and learn model discrepancy and system parameters simultaneously. This work extends by discussion and specification of a guideline on how to define the model discrepancy term complexity, i.e. here the maximum polynomial degree, based on the available measurement data. Furthermore, the suggested method is applied to an electric motor model with synthetic measurement data and evaluated by comparing the results to the reference. The example illustrates the importance and promising perspective of the method by good approximation of discrepancy and parameters. 
533 |a Reproduktion  |d 2017-12-07  |7 |2017|||||||||| 
700 1 |a Schick, Michael  |e VerfasserIn  |0 (DE-588)102073924X  |0 (DE-627)69132820X  |0 (DE-576)357809041  |4 aut 
700 1 |a Heuveline, Vincent  |d 1968-  |e VerfasserIn  |0 (DE-588)1046579266  |0 (DE-627)776691880  |0 (DE-576)399904727  |4 aut 
810 2 |a Engineering Mathematics and Computing Lab  |t Preprint series of the Engineering Mathematics and Computing Lab (EMCL)  |v Preprint no. 2018-01  |9 2018,1  |w (DE-627)776852515  |w (DE-576)399725873  |w (DE-600)2750748-8  |x 2191-0693  |7 am 
856 4 0 |u http://dx.doi.org/10.11588/emclpp.2018.1.51320  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://journals.ub.uni-heidelberg.de/index.php/emcl-pp/article/view/51320  |x Verlag  |3 Volltext 
856 4 0 |u https://doi.org/10.11588/emclpp.2017.7.43398  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://nbn-resolving.de/urn:nbn:de:bsz:16-emclpp-433989  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a BO 
992 |a 20180829 
994 |a 2018 
998 |g 1046579266  |a Heuveline, Vincent  |m 1046579266:Heuveline, Vincent  |d 700000  |d 708000  |e 700000PH1046579266  |e 708000PH1046579266  |k 0/700000/  |k 1/700000/708000/  |p 3  |y j 
998 |g 102073924X  |a Schick, Michael  |m 102073924X:Schick, Michael  |d 700000  |d 708000  |e 700000PS102073924X  |e 708000PS102073924X  |k 0/700000/  |k 1/700000/708000/  |p 2 
998 |g 1165748789  |a John, David  |m 1165748789:John, David  |d 700000  |d 708000  |e 700000PJ1165748789  |e 708000PJ1165748789  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1655382659  |e 3379680907 
BIB |a Y 
JSO |a {"note":["Gesehen am 29.08.2018"],"person":[{"role":"aut","family":"John","given":"David","display":"John, David"},{"family":"Schick","role":"aut","given":"Michael","display":"Schick, Michael"},{"given":"Vincent","display":"Heuveline, Vincent","family":"Heuveline","role":"aut"}],"recId":"1655382659","relMultPart":[{"part":{"number":["Preprint no. 2018-01"],"number_sort":["2018,1"]},"language":["eng"],"dispAlt":"Engineering Mathematics and Computing Lab: Preprint series of the Engineering Mathematics and Computing Lab (EMCL)","pubHistory":["2009 -"],"disp":"Preprint series of the Engineering Mathematics and Computing Lab (EMCL)","type":{"media":"Online-Ressource","bibl":"serial"},"corporate":[{"role":"aut","display":"Engineering Mathematics and Computing Lab"}],"recId":"776852515","physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["2191-0693"],"eki":["776852515"],"zdb":["2750748-8"]},"title":[{"title":"Preprint series of the Engineering Mathematics and Computing Lab (EMCL)","title_sort":"Preprint series of the Engineering Mathematics and Computing Lab (EMCL)"}],"origin":[{"dateIssuedKey":"2009","publisherPlace":"Heidelberg","publisher":"Univ.-Bibliothek","dateIssuedDisp":"2009-"}]}],"name":{"displayForm":["David John, Michael Schick, Vincent Heuveline"]},"language":["eng"],"origin":[{"dateIssuedDisp":"August 23, 2018","publisher":"Univ.-Bibliothek","publisherPlace":"Heidelberg","dateIssuedKey":"2018"}],"id":{"doi":["10.11588/emclpp.2018.1.51320"],"eki":["1655382659"],"uri":["urn:nbn:de:bsz:16-emclpp-433989"]},"physDesc":[{"extent":"1 Online-Ressource (23 Seiten)"}],"title":[{"title_sort":"Learning model discrepancy of an electric motor with Bayesian inference","title":"Learning model discrepancy of an electric motor with Bayesian inference"}],"type":{"media":"Online-Ressource","bibl":"book"}} 
SRT |a JOHNDAVIDSLEARNINGMO2320