Probabilistic photometric redshift estimation in massive digital sky surveys via machine learning

Abstract: The problem of photometric redshift estimation is a major subject in astronomy, since the need of estimating distances for a huge number of sources, as required by the data deluge of the recent years. The ability to estimate redshifts through spectroscopy does not scale with this avalanche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: D'Isanto, Antonio (VerfasserIn)
Dokumenttyp: Buch/Monographie Hochschulschrift
Sprache:Englisch
Veröffentlicht: Heidelberg 2019
DOI:10.11588/heidok.00026000
Schlagworte:
Online-Zugang:Resolving-System, kostenfrei, Volltext: http://dx.doi.org/10.11588/heidok.00026000
Resolving-System, kostenfrei, Volltext: http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-260000
Resolving-System, Volltext: https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-260000
Langzeitarchivierung Nationalbibliothek, Volltext: http://d-nb.info/1179232658/34
Verlag, kostenfrei, Volltext: http://www.ub.uni-heidelberg.de/archiv/26000
Resolving-System, Unbekannt: https://doi.org/10.11588/heidok.00026000
Volltext
Verfasserangaben:Put forward by Antonio D'Isanto ; referees: Prof. Dr. Joachim Wambsganß, Dr. Coryn Bailer-Jones

MARC

LEADER 00000cam a2200000 c 4500
001 1656013843
003 DE-627
005 20230105222407.0
007 cr uuu---uuuuu
008 190313s2019 gw |||||om 00| ||eng c
016 7 |a 1179232658  |2 DE-101 
024 7 |a urn:nbn:de:bsz:16-heidok-260000  |2 urn 
024 7 |a 10.11588/heidok.00026000  |2 doi 
035 |a (DE-627)1656013843 
035 |a (DE-576)520197887 
035 |a (DE-599)BSZ520197887 
035 |a (OCoLC)1136997160 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
044 |c XA-DE-BW 
082 0 |a 522  |q DE-101 
082 0 4 |a 520  |q DE-101 
084 |a 29  |2 sdnb 
084 |a 29  |2 sdnb 
100 1 |a D'Isanto, Antonio  |d 1985-  |e VerfasserIn  |0 (DE-588)1179200764  |0 (DE-627)1066594090  |0 (DE-576)518046990  |4 aut 
245 1 0 |a Probabilistic photometric redshift estimation in massive digital sky surveys via machine learning  |c Put forward by Antonio D'Isanto ; referees: Prof. Dr. Joachim Wambsganß, Dr. Coryn Bailer-Jones 
264 1 |a Heidelberg  |c 2019 
300 |a 1 Online-Ressource (108 Seiten)  |b Illustrationen, Diagramme 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
502 |b Dissertation  |c Ruperto-Carola-University of Heidelberg  |d 2019 
520 |a Abstract: The problem of photometric redshift estimation is a major subject in astronomy, since the need of estimating distances for a huge number of sources, as required by the data deluge of the recent years. The ability to estimate redshifts through spectroscopy does not scale with this avalanche of data. Photometric redshifts provide the required redshift estimates at the cost of some precision. The success of several forthcoming missions is highly dependent on the availability of photometric redshifts. The purpose of this thesis is to provide innovative methods for photometric redshift estimation. Two models are proposed. The first is fully-automatized, based on the combination of a convolutional neural network with a mixture density network, to predict probabilistic multimodal redshifts directly from images. The second model is features-based, performing a massive combination of photometric parameters to apply a forward selection in a huge feature space. The proposed models perform very efficiently compared to some of the most common models used in the literature. An important part of the work is dedicated to the correct estimation of the errors and prediction quality. The proposed models are very general and can be applied to different topics in astronomy and beyond. 
546 |a Mit einer Zusammenfassung in deutscher und englischer Sprache 
655 7 |a Hochschulschrift  |0 (DE-588)4113937-9  |0 (DE-627)105825778  |0 (DE-576)209480580  |2 gnd-content 
700 1 |a Wambsganß, Joachim  |d 1961-  |e AkademischeR BetreuerIn  |0 (DE-588)122246861  |0 (DE-627)081826931  |0 (DE-576)293172137  |4 dgs 
751 |a Heidelberg  |0 (DE-588)4023996-2  |0 (DE-627)106300814  |0 (DE-576)208952578  |4 uvp 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a D'Isanto, Antonio, 1985 -   |t Probabilistic photometric redshift estimation in massive digital sky surveys via machine learning  |d Heidelberg, 2019  |h 108 Seiten  |w (DE-627)1665861487 
856 4 0 |u http://dx.doi.org/10.11588/heidok.00026000  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-260000  |q application/pdf  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-260000  |v 2019-08-23  |x Resolving-System  |3 Volltext 
856 4 0 |u http://d-nb.info/1179232658/34  |v 2019-08-23  |x Langzeitarchivierung Nationalbibliothek  |3 Volltext 
856 4 0 |u http://www.ub.uni-heidelberg.de/archiv/26000  |v 2019-08-23  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 2 |u https://doi.org/10.11588/heidok.00026000  |v 2019-08-23  |x Resolving-System  |3 Unbekannt 
912 |a GBV-ODiss 
951 |a BO 
992 |a 20190313 
993 |a Thesis 
994 |a 2019 
998 |g 1179200764  |a D'Isanto, Antonio  |m 1179200764:D'Isanto, Antonio  |d 130000  |d 130001  |e 130000PD1179200764  |e 130001PD1179200764  |k 0/130000/  |k 1/130000/130001/  |p 1  |x j  |y j 
999 |a KXP-PPN1656013843  |e 3384686233 
BIB |a Y 
JSO |a {"origin":[{"dateIssuedDisp":"2019","dateIssuedKey":"2019","publisherPlace":"Heidelberg"}],"recId":"1656013843","language":["eng"],"name":{"displayForm":["Put forward by Antonio D'Isanto ; referees: Prof. Dr. Joachim Wambsganß, Dr. Coryn Bailer-Jones"]},"type":{"media":"Online-Ressource","bibl":"thesis"},"noteThesis":["Dissertation. - Ruperto-Carola-University of Heidelberg. - 2019"],"physDesc":[{"extent":"1 Online-Ressource (108 Seiten)","noteIll":"Illustrationen, Diagramme"}],"id":{"eki":["1656013843"],"doi":["10.11588/heidok.00026000"],"uri":["urn:nbn:de:bsz:16-heidok-260000"]},"title":[{"title_sort":"Probabilistic photometric redshift estimation in massive digital sky surveys via machine learning","title":"Probabilistic photometric redshift estimation in massive digital sky surveys via machine learning"}],"person":[{"family":"D'Isanto","display":"D'Isanto, Antonio","given":"Antonio","role":"aut"},{"display":"Wambsganß, Joachim","given":"Joachim","role":"dgs","family":"Wambsganß"}]} 
SRT |a DISANTOANTPROBABILIS2019