Elliptic Curves, Modular Forms and Iwasawa Theory: In Honour of John H. Coates' 70th Birthday, Cambridge, UK, March 2015

1. A.Berti, M.Bertolini, R.Venerucci: Congruences between modular forms and the Birch and Swinnerton-Dyer conjecture -- 2. T.Bouganis: P-adic measures for Hermitian modular forms and the Rankin–Selberg method -- 3. A.Conti, A.Iovita, J.Tilouine: Big image of Galois representations associated with fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Loeffler, David (HerausgeberIn) , Zerbes, Sarah Livia (HerausgeberIn)
Dokumenttyp: Konferenzschrift
Sprache:Englisch
Veröffentlicht: Cham Springer 2016
Schriftenreihe:Springer Proceedings in Mathematics & Statistics 188
SpringerLink Bücher
Volumes / Articles: Show Volumes / Articles.
DOI:10.1007/978-3-319-45032-2
Schlagworte:
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/978-3-319-45032-2
Resolving-System, lizenzpflichtig, Volltext: http://dx.doi.org/10.1007/978-3-319-45032-2
Verlag, Zentralblatt MATH, Inhaltstext: https://zbmath.org/?q=an:1364.11005
Volltext
Verfasserangaben:edited by David Loeffler, Sarah Livia Zerbes

MARC

LEADER 00000cam a22000002c 4500
001 1656094231
003 DE-627
005 20250618182221.0
007 cr uuu---uuuuu
008 170224s2016 gw |||||o 00| ||eng c
020 |a 9783319450322  |9 978-3-319-45032-2 
024 7 |a 10.1007/978-3-319-45032-2  |2 doi 
035 |a (DE-627)1656094231 
035 |a (DE-576)484473921 
035 |a (DE-599)BSZ484473921 
035 |a (OCoLC)974039070 
035 |a (OCoLC)1015851536 
035 |a (OCoLC)1060656237 
035 |a (ZBM)1364.11005 
035 |a (DE-627-1)040702359 
035 |a (DE-He213)978-3-319-45032-2 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
044 |c XA-DE  |c XA-CH 
050 0 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 |a 512.7 
084 |a 27  |2 sdnb 
084 |a *11-06  |2 msc 
084 |a 00B25  |2 msc 
084 |a 00B30  |2 msc 
245 0 0 |a Elliptic Curves, Modular Forms and Iwasawa Theory  |b In Honour of John H. Coates' 70th Birthday, Cambridge, UK, March 2015  |c edited by David Loeffler, Sarah Livia Zerbes 
264 1 |a Cham  |b Springer  |c 2016 
300 |a Online-Ressource (VIII, 492 p. 14 illus., 1 illus. in color, online resource) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 0 |a Springer Proceedings in Mathematics & Statistics  |v 188 
490 0 |a SpringerLink  |a Bücher 
520 |a 1. A.Berti, M.Bertolini, R.Venerucci: Congruences between modular forms and the Birch and Swinnerton-Dyer conjecture -- 2. T.Bouganis: P-adic measures for Hermitian modular forms and the Rankin–Selberg method -- 3. A.Conti, A.Iovita, J.Tilouine: Big image of Galois representations associated with finite slope p-adic families of modular forms -- 4. A.Dabrowski: Behaviour of the order of Tate–Shafarevich groups for the quadratic twists of X0(49) -- 5. T.Fukaya, K.Kato, R.Sharifi: Compactifications of S-arithmetic quotients for the projective general linear group -- 6. R.Greenberg: On the structure of Selmer groups -- 7. H.Hida: Control of Lambda-adic Mordell-Weil groups -- 8. M.Kakde: Some congruences for non-CM elliptic curves -- 9. M.Kim: Diophantine geometry and non-abelian reciprocity laws I -- 10. G.Kings: On p-adic interpolation of motivic Eisenstein classes -- 11. T. Lawson, C.Wuthrich: Vanishing of some Galois cohomology groups for elliptic curves -- 12. P.Schneider, O.Venjakob: Coates–Wiles homomorphisms and Iwasawa cohomology for Lubin–Tate extensions -- 13. A.Wiles, A.Snowden: Big image in compatible systems. 
520 |a Celebrating one of the leading figures in contemporary number theory – John H. Coates – on the occasion of his 70th birthday, this collection of contributions covers a range of topics in number theory, concentrating on the arithmetic of elliptic curves, modular forms, and Galois representations. Several of the contributions in this volume were presented at the conference Elliptic Curves, Modular Forms and Iwasawa Theory, held in honour of the 70th birthday of John Coates in Cambridge, March 25-27, 2015. The main unifying theme is Iwasawa theory, a field that John Coates himself has done much to create. This collection is indispensable reading for researchers in Iwasawa theory, and is interesting and valuable for those in many related fields. . 
650 0 |a Mathematics 
650 0 |a Number theory 
655 7 |a Konferenzschrift  |0 (DE-588)1071861417  |0 (DE-627)826484824  |0 (DE-576)433375485  |2 gnd-content 
700 1 |8 1\p  |a Loeffler, David  |e Hrsg.  |0 (DE-588)112495273X  |0 (DE-627)879276614  |0 (DE-576)483265306  |4 edt 
700 1 |8 2\p  |a Zerbes, Sarah Livia  |e Hrsg.  |0 (DE-588)1124952500  |0 (DE-627)879276207  |0 (DE-576)470941618  |4 edt 
776 1 |z 9783319450315 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9783319450315 
856 4 0 |u https://doi.org/10.1007/978-3-319-45032-2  |m X:SPRINGER  |x Verlag  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-45032-2  |m B:SPRINGER  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 2 |u https://zbmath.org/?q=an:1364.11005  |m B:ZBM  |v 2021-04-12  |x Verlag  |y Zentralblatt MATH  |3 Inhaltstext 
883 |8 1\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2\p  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
889 |w (DE-627)879409746 
912 |a ZDB-2-SXMS  |b 2016 
912 |a ZDB-2-SMA  |b 2016 
912 |a ZDB-2-SEB  |b 2016 
935 |h GBV  |i ExPruef 
951 |a BO 
992 |a 20190214 
999 |a KXP-PPN1656094231  |e 3385592925 
BIB |a Y 
SPR |a Y 
JSO |a {"language":["eng"],"recId":"1656094231","physDesc":[{"extent":"Online-Ressource (VIII, 492 p. 14 illus., 1 illus. in color, online resource)"}],"type":{"media":"Online-Ressource","bibl":"edited-book"},"name":{"displayForm":["edited by David Loeffler, Sarah Livia Zerbes"]},"person":[{"given":"David","family":"Loeffler","role":"edt","display":"Loeffler, David","roleDisplay":"Hrsg."},{"role":"edt","roleDisplay":"Hrsg.","display":"Zerbes, Sarah Livia","given":"Sarah Livia","family":"Zerbes"}],"id":{"isbn":["9783319450322"],"doi":["10.1007/978-3-319-45032-2"],"eki":["1656094231"]},"origin":[{"dateIssuedKey":"2016","publisher":"Springer","dateIssuedDisp":"2016","publisherPlace":"Cham"}],"title":[{"title":"Elliptic Curves, Modular Forms and Iwasawa Theory","subtitle":"In Honour of John H. Coates' 70th Birthday, Cambridge, UK, March 2015","title_sort":"Elliptic Curves, Modular Forms and Iwasawa Theory"}]} 
SRT |a ELLIPTICCU2016