Robust logistic regression to narrow down the winner's curse for rare and recessive susceptibility variants [Source code]

Logistic regression is the most common technique used for genetic case-control association studies. A disadvantage of standard maximum likelihood estimators of the genotype relative risk (GRR) is their strong dependence on outlier subjects, for example, patients diagnosed at unusually young age. Rob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kesselmeier, Miriam (VerfasserIn) , Lorenzo Bermejo, Justo (VerfasserIn)
Dokumenttyp: Datenbank Forschungsdaten
Sprache:Englisch
Veröffentlicht: Heidelberg Universität 2018-10-15
DOI:10.11588/data/0Z7H1X
Schlagworte:
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.11588/data/0Z7H1X
Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/0Z7H1X
Volltext
Verfasserangaben:Miriam Kesselmeier, Justo Lorenzo Bermejo

MARC

LEADER 00000cmi a2200000 c 4500
001 1656876027
003 DE-627
005 20191127142616.0
006 su| d|o |0 |0
007 cr uuu---uuuuu
008 181024c20189999xx |o | eng c
024 7 |a 10.11588/data/0Z7H1X  |2 doi 
035 |a (DE-627)1656876027 
035 |a (DE-576)512266522 
035 |a (DE-599)BSZ512266522 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Kesselmeier, Miriam  |d 1983-  |e VerfasserIn  |0 (DE-588)1093868643  |0 (DE-627)853887896  |0 (DE-576)462777642  |4 aut 
245 1 0 |a Robust logistic regression to narrow down the winner's curse for rare and recessive susceptibility variants [Source code]  |c Miriam Kesselmeier, Justo Lorenzo Bermejo 
264 1 |a Heidelberg  |b Universität  |c 2018-10-15 
300 |a 1 Online-Ressource (2 Files) 
336 |a Computerdaten  |b cod  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Deposit date: 2018-07-20 
500 |a Gesehen am 24.10.2018 
520 |a Logistic regression is the most common technique used for genetic case-control association studies. A disadvantage of standard maximum likelihood estimators of the genotype relative risk (GRR) is their strong dependence on outlier subjects, for example, patients diagnosed at unusually young age. Robust methods are available to constrain outlier influence, but they are scarcely used in genetic studies. This article provides a non-intimidating introduction to robust logistic regression, and investigates its benefits and limitations in genetic association studies. We applied the bounded Huber and extended the R package ‘robustbase’ with the re-descending Hampel functions to down-weight outlier influence. Computer simulations were carried out to assess the type I error rate, mean squared error (MSE) and statistical power according to major characteristics of the genetic study and investigated markers. Simulations were complemented with the analysis of real data. Both standard and robust estimation controlled type I error rates. Standard logistic regression showed the highest power but standard GRR estimates also showed the largest bias and MSE, in particular for associated rare and recessive variants. For illustration, a recessive variant with a true GRR=6.32 and a minor allele frequency=0.05 investigated in a 1000 case/1000 control study by standard logistic regression resulted in power=0.60 and MSE=16.5. The corresponding figures for Huber-based estimation were power=0.51 and MSE=0.53. Overall, Hampel- and Huber-based GRR estimates did not differ much. Robust logistic regression may represent a valuable alternative to standard maximum likelihood estimation when the focus lies on risk prediction rather than identification of susceptibility variants. 
655 7 |a Forschungsdaten  |0 (DE-588)1098579690  |0 (DE-627)857755366  |0 (DE-576)469182156  |2 gnd-content 
655 7 |a Datenbank  |0 (DE-588)4011119-2  |0 (DE-627)106354256  |0 (DE-576)208891943  |2 gnd-content 
700 1 |a Lorenzo Bermejo, Justo  |d 1972-  |e VerfasserIn  |0 (DE-588)124754619  |0 (DE-627)706705572  |0 (DE-576)294483632  |4 aut 
787 0 8 |i Forschungsdaten zu  |a Kesselmeier, Miriam, 1983 -   |t Robust logistic regression to narrow down the winner’s curse for rare and recessive susceptibility variants  |d 2017  |w (DE-627)1578513952  |w (DE-576)508513952 
856 4 0 |u http://dx.doi.org/10.11588/data/0Z7H1X  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/0Z7H1X  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a BO 
992 |a 20181024 
993 |a ResearchData 
994 |a 2018 
998 |g 124754619  |a Lorenzo Bermejo, Justo  |m 124754619:Lorenzo Bermejo, Justo  |d 910000  |d 999701  |e 910000PL124754619  |e 999701PL124754619  |k 0/910000/  |k 1/910000/999701/  |p 2  |y j 
998 |g 1093868643  |a Kesselmeier, Miriam  |m 1093868643:Kesselmeier, Miriam  |p 1  |x j 
999 |a KXP-PPN1656876027  |e 3390089284 
BIB |a Y 
JSO |a {"origin":[{"publisher":"Universität","dateIssuedKey":"2018","publisherPlace":"Heidelberg","dateIssuedDisp":"2018-10-15"}],"physDesc":[{"extent":"1 Online-Ressource (2 Files)"}],"id":{"eki":["1656876027"],"doi":["10.11588/data/0Z7H1X"]},"person":[{"roleDisplay":"VerfasserIn","role":"aut","display":"Kesselmeier, Miriam","given":"Miriam","family":"Kesselmeier"},{"family":"Lorenzo Bermejo","role":"aut","roleDisplay":"VerfasserIn","display":"Lorenzo Bermejo, Justo","given":"Justo"}],"title":[{"title_sort":"Robust logistic regression to narrow down the winner's curse for rare and recessive susceptibility variants [Source code]","title":"Robust logistic regression to narrow down the winner's curse for rare and recessive susceptibility variants [Source code]"}],"recId":"1656876027","type":{"media":"Online-Ressource","bibl":"dataset"},"language":["eng"],"note":["Deposit date: 2018-07-20","Gesehen am 24.10.2018"],"name":{"displayForm":["Miriam Kesselmeier, Justo Lorenzo Bermejo"]}} 
SRT |a KESSELMEIEROBUSTLOGI2018