K3 surfaces and their moduli

Introduction -- Samuel Boissière, Andrea Cattaneo, Marc Nieper-Wisskirchen, and Alessandra Sarti: The automorphism group of the Hilbert scheme of two points on a generic projective K3 surface -- Igor Dolgachev: Orbital counting of curves on algebraic surfaces and sphere packings -- V. Gritsenko and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Faber, Carel (HerausgeberIn) , Farkas, Gavril (HerausgeberIn) , Geer, Gerard van der (HerausgeberIn)
Dokumenttyp: Book/Monograph
Sprache:Englisch
Veröffentlicht: [Cham] Birkhäuser 2016
Schriftenreihe:Progress in Mathematics 315
SpringerLink Bücher
Volumes / Articles: Show Volumes / Articles.
DOI:10.1007/978-3-319-29959-4
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/978-3-319-29959-4
Resolving-System, lizenzpflichtig, Volltext: http://dx.doi.org/10.1007/978-3-319-29959-4
Cover: https://swbplus.bsz-bw.de/bsz470387602cov.jpg
Verlag, Zentralblatt MATH, Inhaltstext: https://zbmath.org/?q=an:1348.14003
Volltext
Verfasserangaben:edited by Carel Faber, Gavril Farkas, Gerard van der Geer

MARC

LEADER 00000cam a2200000 c 4500
001 1656982226
003 DE-627
005 20250623182237.0
007 cr uuu---uuuuu
008 160607s2016 gw |||||o 00| ||eng c
020 |a 9783319299594  |9 978-3-319-29959-4 
024 7 |a 10.1007/978-3-319-29959-4  |2 doi 
035 |a (DE-627)1656982226 
035 |a (DE-576)470387602 
035 |a (DE-599)BSZ470387602 
035 |a (OCoLC)953264297 
035 |a (OCoLC)1015842570 
035 |a (OCoLC)1060660144 
035 |a (ZBM)1348.14003 
035 |a (DE-627-1)040322602 
035 |a (DE-He213)978-3-319-29959-4 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
044 |c XA-DE  |c XA-CH 
050 0 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 |a 516.35 
084 |a 27  |2 sdnb 
084 |a 27  |2 sdnb 
084 |a SA 1055  |2 rvk  |0 (DE-625)rvk/142588: 
084 |a *14-06  |2 msc 
084 |a 14J28  |2 msc 
084 |a 14J15  |2 msc 
084 |a 14J10  |2 msc 
084 |a 14J32  |2 msc 
084 |a 14J33  |2 msc 
084 |a 14J50  |2 msc 
084 |a 00B15  |2 msc 
245 0 0 |a K3 surfaces and their moduli  |c edited by Carel Faber, Gavril Farkas, Gerard van der Geer 
264 1 |a [Cham]  |b Birkhäuser  |c 2016 
300 |a Online-Ressource (IX, 399 p. 14 illus., 3 illus. in color, online resource) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 0 |a Progress in Mathematics  |v 315 
490 0 |a SpringerLink  |a Bücher 
500 |a Description based upon print version of record 
520 |a Introduction -- Samuel Boissière, Andrea Cattaneo, Marc Nieper-Wisskirchen, and Alessandra Sarti: The automorphism group of the Hilbert scheme of two points on a generic projective K3 surface -- Igor Dolgachev: Orbital counting of curves on algebraic surfaces and sphere packings -- V. Gritsenko and K. Hulek: Moduli of polarized Enriques surfaces -- Brendan Hassett and Yuri Tschinkel: Extremal rays and automorphisms of holomorphic symplectic varieties -- Gert Heckman and Sander Rieken: An odd presentation for W(E_6) -- S. Katz, A. Klemm, and R. Pandharipande, with an appendix by R. P. Thomas: On the motivic stable pairs invariants of K3 surfaces -- Shigeyuki Kondö: The Igusa quartic and Borcherds products -- Christian Liedtke: Lectures on supersingular K3 surfaces and the crystalline Torelli theorem -- Daisuke Matsushita: On deformations of Lagrangian fibrations -- G. Oberdieck and R. Pandharipande: Curve counting on K3 x E, the Igusa cusp form X_10, and descendent integration -- Keiji Oguiso: Simple abelian varieties and primitive automorphisms of null entropy of surfaces -- Ichiro Shimada: The automorphism groups of certain singular K3 surfaces and an Enriques surface -- Alessandro Verra: Geometry of genus 8 Nikulin surfaces and rationality of their moduli -- Claire Voisin: Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties. 
520 |a This book provides an overview of the latest developments concerning the moduli of K3 surfaces. It is aimed at algebraic geometers, but is also of interest to number theorists and theoretical physicists, and continues the tradition of related volumes like “The Moduli Space of Curves” and “Moduli of Abelian Varieties,” which originated from conferences on the islands Texel and Schiermonnikoog and which have become classics. K3 surfaces and their moduli form a central topic in algebraic geometry and arithmetic geometry, and have recently attracted a lot of attention from both mathematicians and theoretical physicists. Advances in this field often result from mixing sophisticated techniques from algebraic geometry, lattice theory, number theory, and dynamical systems. The topic has received significant impetus due to recent breakthroughs on the Tate conjecture, the study of stability conditions and derived categories, and links with mirror symmetry and string theory. At the same time, the theory of irreducible holomorphic symplectic varieties, the higher dimensional analogues of K3 surfaces, has become a mainstream topic in algebraic geometry. Contributors: S. Boissière, A. Cattaneo, I. Dolgachev, V. Gritsenko, B. Hassett, G. Heckman, K. Hulek, S. Katz, A. Klemm, S. Kondo, C. Liedtke, D. Matsushita, M. Nieper-Wisskirchen, G. Oberdieck, K. Oguiso, R. Pandharipande, S. Rieken, A. Sarti, I. Shimada, R. P. Thomas, Y. Tschinkel, A. Verra, C. Voisin. 
650 0 |a Mathematics 
650 0 |a Algebraic geometry 
700 1 |a Faber, Carel  |d 1962-  |e Hrsg.  |0 (DE-588)172494168  |0 (DE-627)673529932  |0 (DE-576)354980149  |4 edt 
700 1 |a Farkas, Gavril  |d 1973-  |e Hrsg.  |0 (DE-588)1028333536  |0 (DE-627)730580571  |0 (DE-576)375823344  |4 edt 
700 1 |a Geer, Gerard van der  |d 1950-  |e Hrsg.  |0 (DE-588)130489336  |0 (DE-627)502589655  |0 (DE-576)161076939  |4 edt 
776 1 |z 9783319299587 
776 0 8 |i Druckausg.  |t K3 surfaces and their moduli  |d [Basel] : Birkhäuser, 2016  |h ix, 399 Seiten  |w (DE-627)161972846X  |w (DE-576)469560630  |z 9783319299587 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |t K3 surfaces and their moduli  |d [Cham] : Springer, 2016  |h ix, 399 Seiten  |w (DE-627)859655466  |z 9783319299587 
856 4 0 |u https://doi.org/10.1007/978-3-319-29959-4  |m X:SPRINGER  |x Verlag  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-29959-4  |m B:SPRINGER  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 2 |u https://swbplus.bsz-bw.de/bsz470387602cov.jpg  |m V:DE-576  |m X:springer  |q image/jpeg  |v 20160624134730  |3 Cover 
856 4 2 |u https://zbmath.org/?q=an:1348.14003  |m B:ZBM  |v 2021-04-12  |x Verlag  |y Zentralblatt MATH  |3 Inhaltstext 
889 |w (DE-627)857792024 
912 |a ZDB-2-SEB 
912 |a ZDB-2-SXMS  |b 2016 
912 |a ZDB-2-SMA  |b 2016 
935 |h GBV  |i ExPruef 
936 r v |a SA 1055  |b Progress in mathematics  |k Mathematik  |k Referateblätter und Zeitschriften  |k Referateblätter  |k Progress in mathematics  |0 (DE-627)1271541548  |0 (DE-625)rvk/142588:  |0 (DE-576)201541548 
951 |a BO 
992 |a 20250114 
999 |a KXP-PPN1656982226  |e 4651034721 
BIB |a Y 
SPR |a Y 
JSO |a {"id":{"isbn":["9783319299594"],"doi":["10.1007/978-3-319-29959-4"],"eki":["1656982226"]},"title":[{"title":"K3 surfaces and their moduli","title_sort":"K3 surfaces and their moduli"}],"origin":[{"publisherPlace":"[Cham]","publisher":"Birkhäuser","dateIssuedKey":"2016","dateIssuedDisp":"2016"}],"person":[{"role":"edt","roleDisplay":"Hrsg.","display":"Faber, Carel","given":"Carel","family":"Faber"},{"roleDisplay":"Hrsg.","display":"Farkas, Gavril","role":"edt","family":"Farkas","given":"Gavril"},{"display":"Geer, Gerard van der","roleDisplay":"Hrsg.","role":"edt","family":"Geer","given":"Gerard van der"}],"name":{"displayForm":["edited by Carel Faber, Gavril Farkas, Gerard van der Geer"]},"recId":"1656982226","language":["eng"],"note":["Description based upon print version of record"],"type":{"media":"Online-Ressource","bibl":"edited-book"},"physDesc":[{"extent":"Online-Ressource (IX, 399 p. 14 illus., 3 illus. in color, online resource)"}]} 
SRT |a K3SURFACES2016