Form versus function: theory and models for neuronal substrates$nElektronische Ressource

Prologue -- Introduction: From Biological Experiments to Mathematical Models -- Artificial Brains: Simulation and Emulation of Neural Networks -- Dynamics and Statistics of Poisson-Driven LIF Neurons -- Cortical Models on Neuromorphic Hardware -- Probabilistic Inference in Neural Networks -- Epilogue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Petrovici, Mihai A. (VerfasserIn)
Dokumenttyp: Article (Journal) Book/Monograph Hochschulschrift
Sprache:Englisch
Veröffentlicht: Cham Springer 2016
Schriftenreihe:Springer Theses, Recognizing Outstanding Ph.D. Research
SpringerLink Bücher
DOI:10.1007/978-3-319-39552-4
Schlagworte:
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/978-3-319-39552-4
Resolving-System, lizenzpflichtig, Volltext: http://dx.doi.org/10.1007/978-3-319-39552-4
Volltext
Verfasserangaben:by Mihai Alexandru Petrovici

MARC

LEADER 00000cam a2200000 c 4500
001 1658408608
003 DE-627
005 20250310180403.0
007 cr uuu---uuuuu
008 160815s2016 gw |||||om 00| ||eng c
020 |a 9783319395524  |9 978-3-319-39552-4 
024 7 |a 10.1007/978-3-319-39552-4  |2 doi 
035 |a (DE-627)1658408608 
035 |a (DE-576)476155177 
035 |a (DE-599)BSZ476155177 
035 |a (OCoLC)957964803 
035 |a (DE-627-1)040676153 
035 |a (DE-He213)978-3-319-39552-4 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
044 |c XA-DE  |c XA-CH 
050 0 |a QC1-999 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 |a 530.1 
084 |a 29  |2 sdnb 
100 1 |a Petrovici, Mihai A.  |0 (DE-588)1072021005  |0 (DE-627)826788823  |0 (DE-576)433488700  |4 aut 
245 1 0 |a Form versus function  |b theory and models for neuronal substrates$nElektronische Ressource  |c by Mihai Alexandru Petrovici 
264 1 |a Cham  |b Springer  |c 2016 
300 |a Online-Ressource (XXVI, 374 p. 150 illus., 101 illus. in color, online resource) 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
490 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research 
490 0 |a SpringerLink  |a Bücher 
520 |a Prologue -- Introduction: From Biological Experiments to Mathematical Models -- Artificial Brains: Simulation and Emulation of Neural Networks -- Dynamics and Statistics of Poisson-Driven LIF Neurons -- Cortical Models on Neuromorphic Hardware -- Probabilistic Inference in Neural Networks -- Epilogue. 
520 |a This thesis addresses one of the most fundamental challenges for modern science: how can the brain as a network of neurons process information, how can it create and store internal models of our world, and how can it infer conclusions from ambiguous data? The author addresses these questions with the rigorous language of mathematics and theoretical physics, an approach that requires a high degree of abstraction to transfer results of wet lab biology to formal models. The thesis starts with an in-depth description of the state-of-the-art in theoretical neuroscience, which it subsequently uses as a basis to develop several new and original ideas. Throughout the text, the author connects the form and function of neuronal networks. This is done in order to achieve functional performance of biological brains by transferring their form to synthetic electronics substrates, an approach referred to as neuromorphic computing. The obvious aspect that this transfer can never be perfect but necessarily leads to performance differences is substantiated and explored in detail. The author also introduces a novel interpretation of the firing activity of neurons. He proposes a probabilistic interpretation of this activity and shows by means of formal derivations that stochastic neurons can sample from internally stored probability distributions. This is corroborated by the author’s recent findings, which confirm that biological features like the high conductance state of networks enable this mechanism. The author goes on to show that neural sampling can be implemented on synthetic neuromorphic circuits, paving the way for future applications in machine learning and cognitive computing, for example as energy-efficient implementations of deep learning networks. The thesis offers an essential resource for newcomers to the field and an inspiration for scientists working in theoretical neuroscience and the future of computing. 
650 0 |a Physics 
650 0 |a Neurosciences 
650 0 |a Computer simulation 
650 0 |a Neurobiology 
650 0 |a Neural networks (Computer science) 
655 7 |a Hochschulschrift  |0 (DE-588)4113937-9  |0 (DE-627)105825778  |0 (DE-576)209480580  |2 gnd-content 
776 1 |z 9783319395517 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Petrovici, Mihai A.  |t Form Versus Function  |d [Cham] : Springer, 2016  |h XXIII, 374 S.  |w (DE-627)162055920X  |w (DE-576)476624207  |z 9783319395517 
856 4 0 |u https://doi.org/10.1007/978-3-319-39552-4  |m X:SPRINGER  |x Verlag  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-39552-4  |m B:SPRINGER  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
889 |w (DE-627)864749449 
912 |a ZDB-2-SEB 
912 |a ZDB-2-SXP  |b 2016 
912 |a ZDB-2-PHA  |b 2016 
935 |h GBV  |i ExPruef 
951 |a BO 
992 |a 20160822 
993 |a Article 
994 |a 2016 
998 |g 1072021005  |a Petrovici, Mihai A.  |m 1072021005:Petrovici, Mihai A.  |d 130000  |d 130700  |e 130000PP1072021005  |e 130700PP1072021005  |k 0/130000/  |k 1/130000/130700/  |p 1  |x j  |y j 
999 |a KXP-PPN1658408608  |e 3401920812 
BIB |a Y 
JSO |a {"name":{"displayForm":["by Mihai Alexandru Petrovici"]},"person":[{"role":"aut","display":"Petrovici, Mihai A.","given":"Mihai A.","family":"Petrovici"}],"title":[{"title_sort":"Form versus function","subtitle":"theory and models for neuronal substrates$nElektronische Ressource","title":"Form versus function"}],"origin":[{"dateIssuedDisp":"2016","publisher":"Springer","dateIssuedKey":"2016","publisherPlace":"Cham"}],"id":{"doi":["10.1007/978-3-319-39552-4"],"eki":["1658408608"],"isbn":["9783319395524"]},"type":{"media":"Online-Ressource","bibl":"thesis"},"physDesc":[{"extent":"Online-Ressource (XXVI, 374 p. 150 illus., 101 illus. in color, online resource)"}],"recId":"1658408608","language":["eng"]} 
SRT |a PETROVICIMFORMVERSUS2016