Topological and Hodge L-classes of singular covering spaces and varieties with trivial canonical class
The signature of closed oriented manifolds is well-known to be multiplicative under finite covers. This fails for Poincaré complexes as examples of C. T. C. Wall show. We establish the multiplicativity of the signature, and more generally, the topological L-class, for closed oriented stratified pse...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
[April 2019]
|
| In: |
Geometriae dedicata
Year: 2018, Volume: 199, Issue: 1, Pages: 189-224 |
| ISSN: | 1572-9168 |
| DOI: | 10.1007/s10711-018-0345-2 |
| Online Access: | Verlag, Volltext: https://doi.org/10.1007/s10711-018-0345-2 |
| Author Notes: | Markus Banagl |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 166332963X | ||
| 003 | DE-627 | ||
| 005 | 20220816135234.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190416r20192018xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s10711-018-0345-2 |2 doi | |
| 035 | |a (DE-627)166332963X | ||
| 035 | |a (DE-599)KXP166332963X | ||
| 035 | |a (OCoLC)1341209532 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Banagl, Markus |d 1971- |e VerfasserIn |0 (DE-588)132548232 |0 (DE-627)658065114 |0 (DE-576)185904351 |4 aut | |
| 245 | 1 | 0 | |a Topological and Hodge L-classes of singular covering spaces and varieties with trivial canonical class |c Markus Banagl |
| 264 | 1 | |c [April 2019] | |
| 300 | |a 36 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Published online: 21 March 2018 | ||
| 500 | |a Gesehen am 16.04.2019 | ||
| 520 | |a The signature of closed oriented manifolds is well-known to be multiplicative under finite covers. This fails for Poincaré complexes as examples of C. T. C. Wall show. We establish the multiplicativity of the signature, and more generally, the topological L-class, for closed oriented stratified pseudomanifolds that can be equipped with a middle-perverse Verdier self-dual complex of sheaves, determined by Lagrangian sheaves along strata of odd codimension. This class of spaces, called L-pseudomanifolds, contains all Witt spaces and thus all pure-dimensional complex algebraic varieties. We apply this result in proving the Brasselet-Schürmann-Yokura conjecture for normal complex projective 3-folds with at most canonical singularities, trivial canonical class and positive irregularity. The conjecture asserts the equality of topological and Hodge L-class for compact complex algebraic rational homology manifolds. | ||
| 534 | |c 2018 | ||
| 650 | 4 | |a 14E20 | |
| 650 | 4 | |a 14J17 | |
| 650 | 4 | |a 14J30 | |
| 650 | 4 | |a 32S60 | |
| 650 | 4 | |a 55N33 | |
| 650 | 4 | |a 57R20 | |
| 650 | 4 | |a Calabi-Yau varieties | |
| 650 | 4 | |a Canonical singularities | |
| 650 | 4 | |a Characteristic classes | |
| 650 | 4 | |a Hodge theory | |
| 650 | 4 | |a Intersection homology | |
| 650 | 4 | |a Perverse sheaves | |
| 650 | 4 | |a Pseudomanifolds | |
| 650 | 4 | |a Signature | |
| 650 | 4 | |a Stratified spaces | |
| 650 | 4 | |a Varieties of Kodaira dimension zero | |
| 773 | 0 | 8 | |i Enthalten in |t Geometriae dedicata |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1972 |g 199(2019), 1, Seite 189-224 |h Online-Ressource |w (DE-627)270127585 |w (DE-600)1476497-0 |w (DE-576)104194103 |x 1572-9168 |7 nnas |a Topological and Hodge L-classes of singular covering spaces and varieties with trivial canonical class |
| 773 | 1 | 8 | |g volume:199 |g year:2019 |g number:1 |g pages:189-224 |g extent:36 |a Topological and Hodge L-classes of singular covering spaces and varieties with trivial canonical class |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s10711-018-0345-2 |x Verlag |x Resolving-System |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20190416 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 132548232 |a Banagl, Markus |m 132548232:Banagl, Markus |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PB132548232 |e 110100PB132548232 |e 110000PB132548232 |e 110400PB132548232 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN166332963X |e 3422644547 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"36 S."}],"relHost":[{"title":[{"title":"Geometriae dedicata","title_sort":"Geometriae dedicata"}],"recId":"270127585","language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 01.12.05"],"disp":"Topological and Hodge L-classes of singular covering spaces and varieties with trivial canonical classGeometriae dedicata","part":{"volume":"199","text":"199(2019), 1, Seite 189-224","extent":"36","year":"2019","issue":"1","pages":"189-224"},"pubHistory":["1.1972/73 -"],"id":{"issn":["1572-9168"],"zdb":["1476497-0"],"eki":["270127585"]},"origin":[{"publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]","publisher":"Springer Science + Business Media B.V ; Kluwer","dateIssuedKey":"1972","dateIssuedDisp":"1972-"}],"physDesc":[{"extent":"Online-Ressource"}]}],"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"[April 2019]"}],"id":{"eki":["166332963X"],"doi":["10.1007/s10711-018-0345-2"]},"name":{"displayForm":["Markus Banagl"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Published online: 21 March 2018","Gesehen am 16.04.2019"],"recId":"166332963X","language":["eng"],"title":[{"title_sort":"Topological and Hodge L-classes of singular covering spaces and varieties with trivial canonical class","title":"Topological and Hodge L-classes of singular covering spaces and varieties with trivial canonical class"}],"person":[{"given":"Markus","family":"Banagl","role":"aut","roleDisplay":"VerfasserIn","display":"Banagl, Markus"}]} | ||
| SRT | |a BANAGLMARKTOPOLOGICA2019 | ||