Topological and Hodge L-classes of singular covering spaces and varieties with trivial canonical class

The signature of closed oriented manifolds is well-known to be multiplicative under finite covers. This fails for Poincaré complexes as examples of C. T. C. Wall show. We establish the multiplicativity of the signature, and more generally, the topological L-class, for closed oriented stratified pse...

Full description

Saved in:
Bibliographic Details
Main Author: Banagl, Markus (Author)
Format: Article (Journal)
Language:English
Published: [April 2019]
In: Geometriae dedicata
Year: 2018, Volume: 199, Issue: 1, Pages: 189-224
ISSN:1572-9168
DOI:10.1007/s10711-018-0345-2
Online Access:Verlag, Volltext: https://doi.org/10.1007/s10711-018-0345-2
Get full text
Author Notes:Markus Banagl

MARC

LEADER 00000caa a2200000 c 4500
001 166332963X
003 DE-627
005 20220816135234.0
007 cr uuu---uuuuu
008 190416r20192018xx |||||o 00| ||eng c
024 7 |a 10.1007/s10711-018-0345-2  |2 doi 
035 |a (DE-627)166332963X 
035 |a (DE-599)KXP166332963X 
035 |a (OCoLC)1341209532 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Banagl, Markus  |d 1971-  |e VerfasserIn  |0 (DE-588)132548232  |0 (DE-627)658065114  |0 (DE-576)185904351  |4 aut 
245 1 0 |a Topological and Hodge L-classes of singular covering spaces and varieties with trivial canonical class  |c Markus Banagl 
264 1 |c [April 2019] 
300 |a 36 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online: 21 March 2018 
500 |a Gesehen am 16.04.2019 
520 |a The signature of closed oriented manifolds is well-known to be multiplicative under finite covers. This fails for Poincaré complexes as examples of C. T. C. Wall show. We establish the multiplicativity of the signature, and more generally, the topological L-class, for closed oriented stratified pseudomanifolds that can be equipped with a middle-perverse Verdier self-dual complex of sheaves, determined by Lagrangian sheaves along strata of odd codimension. This class of spaces, called L-pseudomanifolds, contains all Witt spaces and thus all pure-dimensional complex algebraic varieties. We apply this result in proving the Brasselet-Schürmann-Yokura conjecture for normal complex projective 3-folds with at most canonical singularities, trivial canonical class and positive irregularity. The conjecture asserts the equality of topological and Hodge L-class for compact complex algebraic rational homology manifolds. 
534 |c 2018 
650 4 |a 14E20 
650 4 |a 14J17 
650 4 |a 14J30 
650 4 |a 32S60 
650 4 |a 55N33 
650 4 |a 57R20 
650 4 |a Calabi-Yau varieties 
650 4 |a Canonical singularities 
650 4 |a Characteristic classes 
650 4 |a Hodge theory 
650 4 |a Intersection homology 
650 4 |a Perverse sheaves 
650 4 |a Pseudomanifolds 
650 4 |a Signature 
650 4 |a Stratified spaces 
650 4 |a Varieties of Kodaira dimension zero 
773 0 8 |i Enthalten in  |t Geometriae dedicata  |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1972  |g 199(2019), 1, Seite 189-224  |h Online-Ressource  |w (DE-627)270127585  |w (DE-600)1476497-0  |w (DE-576)104194103  |x 1572-9168  |7 nnas  |a Topological and Hodge L-classes of singular covering spaces and varieties with trivial canonical class 
773 1 8 |g volume:199  |g year:2019  |g number:1  |g pages:189-224  |g extent:36  |a Topological and Hodge L-classes of singular covering spaces and varieties with trivial canonical class 
856 4 0 |u https://doi.org/10.1007/s10711-018-0345-2  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20190416 
993 |a Article 
994 |a 2019 
998 |g 132548232  |a Banagl, Markus  |m 132548232:Banagl, Markus  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PB132548232  |e 110100PB132548232  |e 110000PB132548232  |e 110400PB132548232  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j  |y j 
999 |a KXP-PPN166332963X  |e 3422644547 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"36 S."}],"relHost":[{"title":[{"title":"Geometriae dedicata","title_sort":"Geometriae dedicata"}],"recId":"270127585","language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 01.12.05"],"disp":"Topological and Hodge L-classes of singular covering spaces and varieties with trivial canonical classGeometriae dedicata","part":{"volume":"199","text":"199(2019), 1, Seite 189-224","extent":"36","year":"2019","issue":"1","pages":"189-224"},"pubHistory":["1.1972/73 -"],"id":{"issn":["1572-9168"],"zdb":["1476497-0"],"eki":["270127585"]},"origin":[{"publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]","publisher":"Springer Science + Business Media B.V ; Kluwer","dateIssuedKey":"1972","dateIssuedDisp":"1972-"}],"physDesc":[{"extent":"Online-Ressource"}]}],"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"[April 2019]"}],"id":{"eki":["166332963X"],"doi":["10.1007/s10711-018-0345-2"]},"name":{"displayForm":["Markus Banagl"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Published online: 21 March 2018","Gesehen am 16.04.2019"],"recId":"166332963X","language":["eng"],"title":[{"title_sort":"Topological and Hodge L-classes of singular covering spaces and varieties with trivial canonical class","title":"Topological and Hodge L-classes of singular covering spaces and varieties with trivial canonical class"}],"person":[{"given":"Markus","family":"Banagl","role":"aut","roleDisplay":"VerfasserIn","display":"Banagl, Markus"}]} 
SRT |a BANAGLMARKTOPOLOGICA2019