Detecting multiple change points using adaptive regression splines with application to neural recordings

Time series, as frequently the case in neuroscience, are rarely stationary, but often exhibit abrupt changes due to attractor transitions or bifurcations in the dynamical systems producing them. A plethora of methods for detecting such change points in time series statistics have been developed over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Toutounji, Hazem (VerfasserIn) , Durstewitz, Daniel (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 04 October 2018
In: Frontiers in neuroinformatics
Year: 2018, Jahrgang: 12
ISSN:1662-5196
DOI:10.3389/fninf.2018.00067
Online-Zugang:Verlag, Volltext: https://doi.org/10.3389/fninf.2018.00067
Verlag, Volltext: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187984/
Volltext
Verfasserangaben:Hazem Toutounji and Daniel Durstewitz

MARC

LEADER 00000caa a2200000 c 4500
001 1664554270
003 DE-627
005 20220816143753.0
007 cr uuu---uuuuu
008 190503s2018 xx |||||o 00| ||eng c
024 7 |a 10.3389/fninf.2018.00067  |2 doi 
035 |a (DE-627)1664554270 
035 |a (DE-599)KXP1664554270 
035 |a (OCoLC)1341212274 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Toutounji, Hazem  |e VerfasserIn  |0 (DE-588)1185197060  |0 (DE-627)1664550526  |4 aut 
245 1 0 |a Detecting multiple change points using adaptive regression splines with application to neural recordings  |c Hazem Toutounji and Daniel Durstewitz 
264 1 |c 04 October 2018 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 03.05.2019 
520 |a Time series, as frequently the case in neuroscience, are rarely stationary, but often exhibit abrupt changes due to attractor transitions or bifurcations in the dynamical systems producing them. A plethora of methods for detecting such change points in time series statistics have been developed over the years, in addition to test criteria to evaluate their significance. Issues to consider when developing change point analysis methods include computational demands, difficulties arising from either limited amount of data or a large number of covariates, and arriving at statistical tests with sufficient power to detect as many changes as contained in potentially high-dimensional time series. Here, a general method called Paired Adaptive Regressors for Cumulative Sum is developed for detecting multiple change points in the mean of multivariate time series. The method's advantages over alternative approaches are demonstrated through a series of simulation experiments. This is followed by a real data application to neural recordings from rat medial prefrontal cortex during learning. Finally, the method's flexibility to incorporate useful features from state-of-the-art change point detection techniques is discussed, along with potential drawbacks and suggestions to remedy them. 
700 1 |a Durstewitz, Daniel  |d 1967-  |e VerfasserIn  |0 (DE-588)12042021X  |0 (DE-627)080664008  |0 (DE-576)174757050  |4 aut 
773 0 8 |i Enthalten in  |t Frontiers in neuroinformatics  |d Lausanne : Frontiers Research Foundation, 2007  |g 12(2018)  |h Online-Ressource  |w (DE-627)57982652X  |w (DE-600)2452979-5  |w (DE-576)286502305  |x 1662-5196  |7 nnas  |a Detecting multiple change points using adaptive regression splines with application to neural recordings 
773 1 8 |g volume:12  |g year:2018  |g extent:17  |a Detecting multiple change points using adaptive regression splines with application to neural recordings 
856 4 0 |u https://doi.org/10.3389/fninf.2018.00067  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187984/  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190503 
993 |a Article 
994 |a 2018 
998 |g 12042021X  |a Durstewitz, Daniel  |m 12042021X:Durstewitz, Daniel  |d 130000  |e 130000PD12042021X  |k 0/130000/  |p 2  |y j 
998 |g 1185197060  |a Toutounji, Hazem  |m 1185197060:Toutounji, Hazem  |d 60000  |d 65300  |e 60000PT1185197060  |e 65300PT1185197060  |k 0/60000/  |k 1/60000/65300/  |p 1  |x j 
999 |a KXP-PPN1664554270  |e 3461619167 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Detecting multiple change points using adaptive regression splines with application to neural recordingsFrontiers in neuroinformatics","recId":"57982652X","note":["Gesehen am 04.06.20"],"id":{"issn":["1662-5196"],"zdb":["2452979-5"],"eki":["57982652X"]},"title":[{"title_sort":"Frontiers in neuroinformatics","title":"Frontiers in neuroinformatics"}],"pubHistory":["2007 -"],"origin":[{"publisherPlace":"Lausanne","dateIssuedKey":"2007","dateIssuedDisp":"2007-","publisher":"Frontiers Research Foundation"}],"name":{"displayForm":["Frontiers Research Foundation"]},"language":["eng"],"part":{"text":"12(2018)","volume":"12","year":"2018","extent":"17"}}],"name":{"displayForm":["Hazem Toutounji and Daniel Durstewitz"]},"recId":"1664554270","language":["eng"],"note":["Gesehen am 03.05.2019"],"id":{"eki":["1664554270"],"doi":["10.3389/fninf.2018.00067"]},"title":[{"title_sort":"Detecting multiple change points using adaptive regression splines with application to neural recordings","title":"Detecting multiple change points using adaptive regression splines with application to neural recordings"}],"person":[{"roleDisplay":"VerfasserIn","given":"Hazem","role":"aut","family":"Toutounji","display":"Toutounji, Hazem"},{"roleDisplay":"VerfasserIn","given":"Daniel","role":"aut","display":"Durstewitz, Daniel","family":"Durstewitz"}],"physDesc":[{"extent":"17 S."}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"04 October 2018"}]} 
SRT |a TOUTOUNJIHDETECTINGM0420