Detecting multiple change points using adaptive regression splines with application to neural recordings
Time series, as frequently the case in neuroscience, are rarely stationary, but often exhibit abrupt changes due to attractor transitions or bifurcations in the dynamical systems producing them. A plethora of methods for detecting such change points in time series statistics have been developed over...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
04 October 2018
|
| In: |
Frontiers in neuroinformatics
Year: 2018, Jahrgang: 12 |
| ISSN: | 1662-5196 |
| DOI: | 10.3389/fninf.2018.00067 |
| Online-Zugang: | Verlag, Volltext: https://doi.org/10.3389/fninf.2018.00067 Verlag, Volltext: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187984/ |
| Verfasserangaben: | Hazem Toutounji and Daniel Durstewitz |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1664554270 | ||
| 003 | DE-627 | ||
| 005 | 20220816143753.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190503s2018 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3389/fninf.2018.00067 |2 doi | |
| 035 | |a (DE-627)1664554270 | ||
| 035 | |a (DE-599)KXP1664554270 | ||
| 035 | |a (OCoLC)1341212274 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Toutounji, Hazem |e VerfasserIn |0 (DE-588)1185197060 |0 (DE-627)1664550526 |4 aut | |
| 245 | 1 | 0 | |a Detecting multiple change points using adaptive regression splines with application to neural recordings |c Hazem Toutounji and Daniel Durstewitz |
| 264 | 1 | |c 04 October 2018 | |
| 300 | |a 17 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 03.05.2019 | ||
| 520 | |a Time series, as frequently the case in neuroscience, are rarely stationary, but often exhibit abrupt changes due to attractor transitions or bifurcations in the dynamical systems producing them. A plethora of methods for detecting such change points in time series statistics have been developed over the years, in addition to test criteria to evaluate their significance. Issues to consider when developing change point analysis methods include computational demands, difficulties arising from either limited amount of data or a large number of covariates, and arriving at statistical tests with sufficient power to detect as many changes as contained in potentially high-dimensional time series. Here, a general method called Paired Adaptive Regressors for Cumulative Sum is developed for detecting multiple change points in the mean of multivariate time series. The method's advantages over alternative approaches are demonstrated through a series of simulation experiments. This is followed by a real data application to neural recordings from rat medial prefrontal cortex during learning. Finally, the method's flexibility to incorporate useful features from state-of-the-art change point detection techniques is discussed, along with potential drawbacks and suggestions to remedy them. | ||
| 700 | 1 | |a Durstewitz, Daniel |d 1967- |e VerfasserIn |0 (DE-588)12042021X |0 (DE-627)080664008 |0 (DE-576)174757050 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Frontiers in neuroinformatics |d Lausanne : Frontiers Research Foundation, 2007 |g 12(2018) |h Online-Ressource |w (DE-627)57982652X |w (DE-600)2452979-5 |w (DE-576)286502305 |x 1662-5196 |7 nnas |a Detecting multiple change points using adaptive regression splines with application to neural recordings |
| 773 | 1 | 8 | |g volume:12 |g year:2018 |g extent:17 |a Detecting multiple change points using adaptive regression splines with application to neural recordings |
| 856 | 4 | 0 | |u https://doi.org/10.3389/fninf.2018.00067 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187984/ |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20190503 | ||
| 993 | |a Article | ||
| 994 | |a 2018 | ||
| 998 | |g 12042021X |a Durstewitz, Daniel |m 12042021X:Durstewitz, Daniel |d 130000 |e 130000PD12042021X |k 0/130000/ |p 2 |y j | ||
| 998 | |g 1185197060 |a Toutounji, Hazem |m 1185197060:Toutounji, Hazem |d 60000 |d 65300 |e 60000PT1185197060 |e 65300PT1185197060 |k 0/60000/ |k 1/60000/65300/ |p 1 |x j | ||
| 999 | |a KXP-PPN1664554270 |e 3461619167 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Detecting multiple change points using adaptive regression splines with application to neural recordingsFrontiers in neuroinformatics","recId":"57982652X","note":["Gesehen am 04.06.20"],"id":{"issn":["1662-5196"],"zdb":["2452979-5"],"eki":["57982652X"]},"title":[{"title_sort":"Frontiers in neuroinformatics","title":"Frontiers in neuroinformatics"}],"pubHistory":["2007 -"],"origin":[{"publisherPlace":"Lausanne","dateIssuedKey":"2007","dateIssuedDisp":"2007-","publisher":"Frontiers Research Foundation"}],"name":{"displayForm":["Frontiers Research Foundation"]},"language":["eng"],"part":{"text":"12(2018)","volume":"12","year":"2018","extent":"17"}}],"name":{"displayForm":["Hazem Toutounji and Daniel Durstewitz"]},"recId":"1664554270","language":["eng"],"note":["Gesehen am 03.05.2019"],"id":{"eki":["1664554270"],"doi":["10.3389/fninf.2018.00067"]},"title":[{"title_sort":"Detecting multiple change points using adaptive regression splines with application to neural recordings","title":"Detecting multiple change points using adaptive regression splines with application to neural recordings"}],"person":[{"roleDisplay":"VerfasserIn","given":"Hazem","role":"aut","family":"Toutounji","display":"Toutounji, Hazem"},{"roleDisplay":"VerfasserIn","given":"Daniel","role":"aut","display":"Durstewitz, Daniel","family":"Durstewitz"}],"physDesc":[{"extent":"17 S."}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"04 October 2018"}]} | ||
| SRT | |a TOUTOUNJIHDETECTINGM0420 | ||