Assessment of modeling strategies for drug response prediction in cell lines and xenografts

Abstract: Despite significant progress in cancer research, effective cancer treatment is still a challenge. Cancer treatment approaches are shifting from standard cytotoxic chemotherapy regimens towards a precision oncology paradigm, where a choice of treatment is personalized, i.e. based on a tumor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kurilov, Roman (VerfasserIn)
Dokumenttyp: Book/Monograph Hochschulschrift
Sprache:Englisch
Veröffentlicht: Heidelberg 20 Mrz 2019
DOI:10.11588/heidok.00026166
Schlagworte:
Online-Zugang:Verlag, kostenfrei, Volltext: https://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-261663
Resolving-System, kostenfrei, Volltext: http://dx.doi.org/10.11588/heidok.00026166
Verlag, kostenfrei, Volltext: http://www.ub.uni-heidelberg.de/archiv/26166
Langzeitarchivierung Nationalbibliothek, Volltext: http://d-nb.info/1181331021/34
Resolving-System, Volltext: https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-261663
Resolving-System, Unbekannt: https://doi.org/10.11588/heidok.00026166
Volltext
Verfasserangaben:Roman Kurilov ; referees: Prof. Dr. Benedikt Brors, Prof. Dr. Thorsten Zenz

MARC

LEADER 00000cam a2200000 c 4500
001 1664646949
003 DE-627
005 20230905070946.0
007 cr uuu---uuuuu
008 190506s2019 gw |||||om 00| ||eng c
016 7 |a 1181331021  |2 DE-101 
024 7 |a urn:nbn:de:bsz:16-heidok-261663  |2 urn 
024 7 |a 10.11588/heidok.00026166  |2 doi 
035 |a (DE-627)1664646949 
035 |a (DE-599)KXP1664646949 
035 |a (OCoLC)1135073066 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
044 |c XA-DE-BW 
082 0 |a 616.994  |q DE-101 
082 0 4 |a 610  |q DE-101 
084 |a 33  |2 sdnb 
084 |a 33  |2 sdnb 
100 1 |a Kurilov, Roman  |e VerfasserIn  |0 (DE-588)1185446087  |0 (DE-627)1664647805  |4 aut 
245 1 0 |a Assessment of modeling strategies for drug response prediction in cell lines and xenografts  |c Roman Kurilov ; referees: Prof. Dr. Benedikt Brors, Prof. Dr. Thorsten Zenz 
246 1 |i Übersetzung des Haupttitels  |a Evaluation von Modellierungsstrategien für die Vohersage des Wirkstoffansprechens in Zelllinien und Xenotransplantaten. 
264 1 |a Heidelberg  |c 20 Mrz 2019 
300 |a 1 Online-Ressource (100 Seiten)  |b Illustrationen, Diagramme 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
502 |b Dissertation  |c Ruperto Carola University Heidelberg  |d 2019 
520 |a Abstract: Despite significant progress in cancer research, effective cancer treatment is still a challenge. Cancer treatment approaches are shifting from standard cytotoxic chemotherapy regimens towards a precision oncology paradigm, where a choice of treatment is personalized, i.e. based on a tumor’s molecular features. In order to match tumor molecular features with therapeutics we need to identify biomarkers of response and build predictive models. Recent growth of large-scale pharmacogenomics resources which combine drug sensitivity and multi-omics information on a large number of samples provides necessary data for biomarker identification and drug response modelling. However, although many efforts of using this information for drug response prediction have been made, our ability to accurately predict drug response using genetic data remains limited. In this work we used pharmacogenomics data from the largest publicly available studies in order to systematically assess various aspects of the drug response model-building process with the ultimate goal of improving prediction accuracy. We applied several machine learning methods (regularized regression, support vector machines, random forest) for predicting response to a number of drugs. We found that while accuracy of response prediction varies across drugs (in most of the cases R2 values vary between 0.1 and 0.3), different machine learning algorithms applied for the the same drug have similar prediction performance. Experiments with a range of different training sets for the same drug showed that predictive power of a model depends on the type of molecular data, the selected drug response metric, and the size of the training set. It depends less on number of features selected for modelling and on class imbalance in training set. We also implemented and tested two methods for improving consistency for pharmacogenomics data coming from different datasets. We tested our ability to correctly predict response in xenografts and patients using models trained on cell lines. Only in a fraction of the tested cases we managed to get reasonably accurate predictions, particularly in case of response to erlotinib in the NSCLC xenograft cohort, and in cases of responses to erlotinib and docetaxel in the NSCLC and BRCA patient cohorts respectively. This work also includes two applied pharmacogenomics analyses. The first is an analysis of a drug-sensitivity screen performed on a panel of Burkitt cell lines. This combines unsupervised data exploration with supervised modelling. The second is an analysis of drug-sensitivity data for the DKFZ-608 compound and the generation of the corresponding response prediction model. In summary, we applied machine learning techniques to available high-throughput pharmacogenomics data to study the determinants of accurate drug response prediction. Our results can help to draft guidelines for building accurate models for personalized drug response prediction and therefore contribute to advancing of precision oncology. 
546 |a Mit einer Zusammenfassung in deutscher und englischer Sprache 
655 7 |a Hochschulschrift  |0 (DE-588)4113937-9  |0 (DE-627)105825778  |0 (DE-576)209480580  |2 gnd-content 
700 1 |a Brors, Benedikt  |e AkademischeR BetreuerIn  |0 (DE-588)1112102965  |0 (DE-627)866068732  |0 (DE-576)476376157  |4 dgs 
751 |a Heidelberg  |0 (DE-588)4023996-2  |0 (DE-627)106300814  |0 (DE-576)208952578  |4 uvp 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Kurilov, Roman  |t Assessment of modeling strategies for drug response prediction in cell lines and xenografts  |d Heidelberg, 2019  |h 100 Seiten  |w (DE-627)1666346772 
856 4 0 |u https://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-261663  |q application/pdf  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u http://dx.doi.org/10.11588/heidok.00026166  |x Resolving-System  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u http://www.ub.uni-heidelberg.de/archiv/26166  |q application/pdf  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u http://d-nb.info/1181331021/34  |v 2019-08-23  |x Langzeitarchivierung Nationalbibliothek  |3 Volltext 
856 4 0 |u https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-261663  |v 2019-08-23  |x Resolving-System  |3 Volltext 
856 4 2 |u https://doi.org/10.11588/heidok.00026166  |v 2019-08-23  |x Resolving-System  |3 Unbekannt 
912 |a GBV-ODiss 
951 |a BO 
992 |a 20190506 
993 |a Thesis 
994 |a 2019 
998 |g 1185446087  |a Kurilov, Roman  |m 1185446087:Kurilov, Roman  |d 140000  |d 140001  |e 140000PK1185446087  |e 140001PK1185446087  |k 0/140000/  |k 1/140000/140001/  |p 1  |x j  |y j 
999 |a KXP-PPN1664646949  |e 3469317615 
BIB |a Y 
JSO |a {"person":[{"role":"aut","display":"Kurilov, Roman","roleDisplay":"VerfasserIn","given":"Roman","family":"Kurilov"},{"family":"Brors","given":"Benedikt","roleDisplay":"AkademischeR BetreuerIn","display":"Brors, Benedikt","role":"dgs"}],"noteThesis":["Dissertation. - Ruperto Carola University Heidelberg. - 2019"],"title":[{"title":"Assessment of modeling strategies for drug response prediction in cell lines and xenografts","title_sort":"Assessment of modeling strategies for drug response prediction in cell lines and xenografts"}],"recId":"1664646949","language":["eng"],"type":{"bibl":"thesis","media":"Online-Ressource"},"titleAlt":[{"title":"Evaluation von Modellierungsstrategien für die Vohersage des Wirkstoffansprechens in Zelllinien und Xenotransplantaten."}],"name":{"displayForm":["Roman Kurilov ; referees: Prof. Dr. Benedikt Brors, Prof. Dr. Thorsten Zenz"]},"id":{"uri":["urn:nbn:de:bsz:16-heidok-261663"],"eki":["1664646949"],"doi":["10.11588/heidok.00026166"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"20 Mrz 2019","publisherPlace":"Heidelberg"}],"physDesc":[{"extent":"1 Online-Ressource (100 Seiten)","noteIll":"Illustrationen, Diagramme"}]} 
SRT |a KURILOVROMASSESSMENT2020