Coronary CT angiography-derived fractional flow reserve: machine learning algorithm versus computational fluid dynamics modeling

PurposeTo compare two technical approaches for determination of coronary computed tomography (CT) angiography-derived fractional flow reserve (FFR)—FFR derived from coronary CT angiography based on computational fluid dynamics (hereafter, FFRCFD) and FFR derived from coronary CT angiography based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Teschendorf, Christian (VerfasserIn) , Baumann, Stefan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: Apr 10 2018
In: Radiology
Year: 2018, Jahrgang: 288, Heft: 1, Pages: 64-72
ISSN:1527-1315
DOI:10.1148/radiol.2018171291
Online-Zugang:Verlag, Volltext: https://doi.org/10.1148/radiol.2018171291
Verlag, Volltext: https://pubs.rsna.org/doi/10.1148/radiol.2018171291
Volltext
Verfasserangaben:Christian Tesche, Carlo N. De Cecco, Stefan Baumann, Matthias Renker, Tindal W. McLaurin, Taylor M. Duguay, Richard R. Bayer, Daniel H. Steinberg, Katharine L. Grant, Christian Canstein, Chris Schwemmer, Max Schoebinger, Lucian M. Itu, Saikiran Rapaka, Puneet Sharma, U. Joseph Schoepf

MARC

LEADER 00000caa a2200000 c 4500
001 1665360526
003 DE-627
005 20220816151858.0
007 cr uuu---uuuuu
008 190514s2018 xx |||||o 00| ||eng c
024 7 |a 10.1148/radiol.2018171291  |2 doi 
035 |a (DE-627)1665360526 
035 |a (DE-599)KXP1665360526 
035 |a (OCoLC)1341213026 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Teschendorf, Christian  |d 1966-  |e VerfasserIn  |0 (DE-588)172929806  |0 (DE-627)697857123  |0 (DE-576)133784150  |4 aut 
245 1 0 |a Coronary CT angiography-derived fractional flow reserve  |b machine learning algorithm versus computational fluid dynamics modeling  |c Christian Tesche, Carlo N. De Cecco, Stefan Baumann, Matthias Renker, Tindal W. McLaurin, Taylor M. Duguay, Richard R. Bayer, Daniel H. Steinberg, Katharine L. Grant, Christian Canstein, Chris Schwemmer, Max Schoebinger, Lucian M. Itu, Saikiran Rapaka, Puneet Sharma, U. Joseph Schoepf 
264 1 |c Apr 10 2018 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.05.2019 
520 |a PurposeTo compare two technical approaches for determination of coronary computed tomography (CT) angiography-derived fractional flow reserve (FFR)—FFR derived from coronary CT angiography based on computational fluid dynamics (hereafter, FFRCFD) and FFR derived from coronary CT angiography based on machine learning algorithm (hereafter, FFRML)—against coronary CT angiography and quantitative coronary angiography (QCA).Materials and MethodsA total of 85 patients (mean age, 62 years ± 11 [standard deviation]; 62% men) who had undergone coronary CT angiography followed by invasive FFR were included in this single-center retrospective study. FFR values were derived on-site from coronary CT angiography data sets by using both FFRCFD and FFRML. The performance of both techniques for detecting lesion-specific ischemia was compared against visual stenosis grading at coronary CT angiography, QCA, and invasive FFR as the reference standard.ResultsOn a per-lesion and per-patient level, FFRML showed a sensitivity of 79% and 90% and a specificity of 94% and 95%, respectively, for detecting lesion-specific ischemia. Meanwhile, FFRCFD resulted in a sensitivity of 79% and 89% and a specificity of 93% and 93%, respectively, on a per-lesion and per-patient basis (P = .86 and P = .92). On a per-lesion level, the area under the receiver operating characteristics curve (AUC) of 0.89 for FFRML and 0.89 for FFRCFD showed significantly higher discriminatory power for detecting lesion-specific ischemia compared with that of coronary CT angiography (AUC, 0.61) and QCA (AUC, 0.69) (all P < .0001). Also, on a per-patient level, FFRML (AUC, 0.91) and FFRCFD (AUC, 0.91) performed significantly better than did coronary CT angiography (AUC, 0.65) and QCA (AUC, 0.68) (all P < .0001). Processing time for FFRML was significantly shorter compared with that of FFRCFD (40.5 minutes ± 6.3 vs 43.4 minutes ± 7.1; P = .042).ConclusionThe FFRML algorithm performs equally in detecting lesion-specific ischemia when compared with the FFRCFD approach. Both methods outperform accuracy of coronary CT angiography and QCA in the detection of flow-limiting stenosis.© RSNA, 2018 
700 1 |a Baumann, Stefan  |d 1983-  |e VerfasserIn  |0 (DE-588)1015785875  |0 (DE-627)669896462  |0 (DE-576)351096906  |4 aut 
773 0 8 |i Enthalten in  |t Radiology  |d Oak Brook, Ill. : Soc., 1923  |g 288(2018), 1, Seite 64-72  |h Online-Ressource  |w (DE-627)320487253  |w (DE-600)2010588-5  |w (DE-576)094056706  |x 1527-1315  |7 nnas  |a Coronary CT angiography-derived fractional flow reserve machine learning algorithm versus computational fluid dynamics modeling 
773 1 8 |g volume:288  |g year:2018  |g number:1  |g pages:64-72  |g extent:9  |a Coronary CT angiography-derived fractional flow reserve machine learning algorithm versus computational fluid dynamics modeling 
856 4 0 |u https://doi.org/10.1148/radiol.2018171291  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://pubs.rsna.org/doi/10.1148/radiol.2018171291  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190514 
993 |a Article 
994 |a 2018 
998 |g 1015785875  |a Baumann, Stefan  |m 1015785875:Baumann, Stefan  |d 60000  |d 61000  |e 60000PB1015785875  |e 61000PB1015785875  |k 0/60000/  |k 1/60000/61000/  |p 3 
999 |a KXP-PPN1665360526  |e 3475715368 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1665360526","id":{"doi":["10.1148/radiol.2018171291"],"eki":["1665360526"]},"note":["Gesehen am 14.05.2019"],"physDesc":[{"extent":"9 S."}],"person":[{"given":"Christian","family":"Teschendorf","roleDisplay":"VerfasserIn","role":"aut","display":"Teschendorf, Christian"},{"role":"aut","display":"Baumann, Stefan","roleDisplay":"VerfasserIn","given":"Stefan","family":"Baumann"}],"name":{"displayForm":["Christian Tesche, Carlo N. De Cecco, Stefan Baumann, Matthias Renker, Tindal W. McLaurin, Taylor M. Duguay, Richard R. Bayer, Daniel H. Steinberg, Katharine L. Grant, Christian Canstein, Chris Schwemmer, Max Schoebinger, Lucian M. Itu, Saikiran Rapaka, Puneet Sharma, U. Joseph Schoepf"]},"origin":[{"dateIssuedDisp":"Apr 10 2018","dateIssuedKey":"2018"}],"relHost":[{"corporate":[{"role":"isb","display":"Radiological Society of North America","roleDisplay":"Herausgebendes Organ"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title_sort":"Radiology","title":"Radiology"}],"origin":[{"dateIssuedDisp":"1923-","dateIssuedKey":"1923","publisherPlace":"Oak Brook, Ill.","publisher":"Soc."}],"part":{"year":"2018","issue":"1","text":"288(2018), 1, Seite 64-72","extent":"9","volume":"288","pages":"64-72"},"disp":"Coronary CT angiography-derived fractional flow reserve machine learning algorithm versus computational fluid dynamics modelingRadiology","language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"note":["Fortsetzung der Druck-Ausgabe","Gesehen 07.11.22"],"pubHistory":["1.1923 -"],"name":{"displayForm":["The Radiological Society of North America"]},"id":{"eki":["320487253"],"zdb":["2010588-5"],"issn":["1527-1315"]},"recId":"320487253"}],"title":[{"title_sort":"Coronary CT angiography-derived fractional flow reserve","title":"Coronary CT angiography-derived fractional flow reserve","subtitle":"machine learning algorithm versus computational fluid dynamics modeling"}],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a TESCHENDORCORONARYCT1020