Statistical learning based inference and analysis of epigenetic regulatory network topologies in T-helper cells

Abstract: The reliable statistical inference of epigenetic regulatory networks that govern mammalian cell fates is very challenging. In this thesis we study this question for the differentiation decisions of T-helper (Th) cells, which have recently been shown to adopt a continuum of differentiated s...

Full description

Saved in:
Bibliographic Details
Main Author: Kommer, Christoph (Author)
Format: Book/Monograph Thesis
Language:English
Published: Heidelberg 31 Okt 2018
DOI:10.11588/heidok.00025489
Subjects:
Online Access:Verlag, kostenfrei, Volltext: https://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-254893
Resolving-System, Volltext: http://dx.doi.org/10.11588/heidok.00025489
Verlag, kostenfrei, Volltext: http://www.ub.uni-heidelberg.de/archiv/25489
Langzeitarchivierung Nationalbibliothek, Volltext: http://d-nb.info/1183681623/34
Resolving-System, Volltext: https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-254893
Resolving-System, Unbekannt: https://doi.org/10.11588/heidok.00025489
Get full text
Author Notes:put forward by M. Sc. Christoph Kommer ; referees: Prof. Dr. Thomas Höfer, Prof. Dr. Ursula Kummer

MARC

LEADER 00000cam a2200000 c 4500
001 1665543167
003 DE-627
005 20230426084932.0
007 cr uuu---uuuuu
008 190514s2018 gw |||||om 00| ||eng c
016 7 |a 1183681623  |2 DE-101 
024 7 |a urn:nbn:de:bsz:16-heidok-254893  |2 urn 
024 7 |a 10.11588/heidok.00025489  |2 doi 
035 |a (DE-627)1665543167 
035 |a (DE-599)KXP1665543167 
035 |a (OCoLC)1135318523 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
044 |c XA-DE-BW 
082 0 |a 005.54  |q DE-101 
082 0 4 |a 570  |q DE-101 
084 |a 32  |2 sdnb 
084 |a 32  |2 sdnb 
100 1 |a Kommer, Christoph  |e VerfasserIn  |0 (DE-588)1077748272  |0 (DE-627)837438322  |0 (DE-576)39959261X  |4 aut 
245 1 0 |a Statistical learning based inference and analysis of epigenetic regulatory network topologies in T-helper cells  |c put forward by M. Sc. Christoph Kommer ; referees: Prof. Dr. Thomas Höfer, Prof. Dr. Ursula Kummer 
246 1 |i Übersetzung des Haupttitels  |a Inferenz und Analyse epigenetischer regulatorischer Netzwerktopologien basierend auf statistischen Lernmethoden in T-Helfer Zellen 
264 1 |a Heidelberg  |c 31 Okt 2018 
300 |a 1 Online-Ressource (iv, 272 Seiten)  |b Illustrationen, Diagramme 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
502 |b Dissertation  |c Ruperto Carola University Heidelberg  |d 2018 
520 |a Abstract: The reliable statistical inference of epigenetic regulatory networks that govern mammalian cell fates is very challenging. In this thesis we study this question for the differentiation decisions of T-helper (Th) cells, which have recently been shown to adopt a continuum of differentiated states in response to cytokine signals. To infer the underlying regulatory networks we introduce a novel framework for the inference of epigenetic regulatory network topologies based on statistical learning. First, we infer, via a Hidden Markov Model, chromatin states based on histone modification patterns in naïve Th cells and differentiated Th1, Th2 and mixed Th1/2 states; these states are controlled by external cytokine stimuli and the gene dose of the Th1 master transcription factor Tbet (Tbx21). We then introduce a linear multivariate correlation measure for mapping enhancers to their target genes, which is parametrized on a training set of known enhancers. This analysis is refined further by the application of partial correlations to distinguish direct from indirect effects. Applying this approach to our data, we recover known enhancers and obtain a genomewide enhancer-gene mapping. We also extend this to the correlation of repressive regulatory elements with gene expression. Next, we focus on the enhancers that regulate differentially expressed Th1 and Th2 specific transcripts. Building machine learning based predictors, we identify Th1 and Th2 specific enhancer and repressive state classes characterized by their response patterns to cytokine stimuli and Tbet dose. In turn, we use chromatin immunoprecipitation data of transcription factors to define the transcriptional regulatory logic governing the activities of the enhancer classes. Finally, we combine enhancer-target gene maps and enhancer regulatory logic as well as inhibitory elements to infer a bipartite epigenetic network. The network architecture builds on enhancer and repressive state classes as well as on genes and transcription factors leading to a weighted multidigraph. The network topology reveals distinct community structures related to Th1, Th2 and hybrid functionality. We furthermore analyse multiplex networks resulting in condition-specific topologies. From these analyses we obtain unique contributions of distinct network nodes. Utilizing random walks on multidigraphs we extract metastable processes underlying the observed system. In conclusion we present a robust quantitative framework for mapping chromatin states to gene activity, and, by factoring in transcription factor regulation of enhancers, inferring epigenetic regulatory networks. This methodology is applicable to a wide range of systems. 
546 |a Mit einer Zusammenfassung in deutscher und englischer Sprache 
650 0 7 |0 (DE-588)4171531-7  |0 (DE-627)105394130  |0 (DE-576)209937556  |a Netzwerktheorie  |2 gnd 
650 0 7 |0 (DE-588)7651795-0  |0 (DE-627)594524318  |0 (DE-576)304479772  |a Mathematische Modellierung  |2 gnd 
650 0 7 |0 (DE-588)4193754-5  |0 (DE-627)105224782  |0 (DE-576)21008944X  |a Maschinelles Lernen  |2 gnd 
650 0 7 |0 (DE-588)7566079-9  |0 (DE-627)527605204  |0 (DE-576)263802280  |a Epigenetik  |2 gnd 
650 0 7 |0 (DE-588)4330567-2  |0 (DE-627)13321804X  |0 (DE-576)211312479  |a Enhancer  |2 gnd 
650 0 7 |0 (DE-588)4127387-4  |0 (DE-627)104584483  |0 (DE-576)209593202  |a T-Lymphozyt  |2 gnd 
650 0 7 |0 (DE-588)4358934-0  |0 (DE-627)181298457  |0 (DE-576)211608645  |a Multistabilität  |2 gnd 
650 0 7 |0 (DE-588)4134948-9  |0 (DE-627)105668788  |0 (DE-576)209656603  |a Markov-Prozess  |2 gnd 
650 0 7 |0 (DE-588)4142443-8  |0 (DE-627)105613142  |0 (DE-576)209718811  |a Angewandte Mathematik  |2 gnd 
650 0 7 |0 (DE-588)4809615-5  |0 (DE-627)476607442  |0 (DE-576)216608538  |a Systembiologie  |2 gnd 
655 7 |a Hochschulschrift  |0 (DE-588)4113937-9  |0 (DE-627)105825778  |0 (DE-576)209480580  |2 gnd-content 
700 1 |a Höfer, Thomas  |d 1967-  |e AkademischeR BetreuerIn  |0 (DE-588)1132596769  |0 (DE-627)887985343  |0 (DE-576)488908086  |4 dgs 
751 |a Heidelberg  |0 (DE-588)4023996-2  |0 (DE-627)106300814  |0 (DE-576)208952578  |4 uvp 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Kommer, Christoph  |t Statistical learning based inference and analysis of epigenetic regulatory network topologies in T-helper cells  |d Heidelberg, 2018  |h iv, 272 Seiten  |w (DE-627)1585627690  |w (DE-576)515627690 
856 4 0 |u https://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-254893  |q application/pdf  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u http://dx.doi.org/10.11588/heidok.00025489  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.ub.uni-heidelberg.de/archiv/25489  |q application/pdf  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u http://d-nb.info/1183681623/34  |v 2019-08-23  |x Langzeitarchivierung Nationalbibliothek  |3 Volltext 
856 4 0 |u https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-254893  |v 2019-08-23  |x Resolving-System  |3 Volltext 
856 4 2 |u https://doi.org/10.11588/heidok.00025489  |v 2019-08-23  |x Resolving-System  |3 Unbekannt 
912 |a GBV-ODiss 
951 |a BO 
992 |a 20190514 
993 |a Thesis 
994 |a 2018 
998 |g 1077748272  |a Kommer, Christoph  |m 1077748272:Kommer, Christoph  |d 140000  |d 140001  |e 140000PK1077748272  |e 140001PK1077748272  |k 0/140000/  |k 1/140000/140001/  |p 1  |x j  |y j 
999 |a KXP-PPN1665543167  |e 347582227X 
BIB |a Y 
JSO |a {"recId":"1665543167","name":{"displayForm":["put forward by M. Sc. Christoph Kommer ; referees: Prof. Dr. Thomas Höfer, Prof. Dr. Ursula Kummer"]},"noteThesis":["Dissertation. - Ruperto Carola University Heidelberg. - 2018"],"origin":[{"dateIssuedDisp":"31 Okt 2018","dateIssuedKey":"2018","publisherPlace":"Heidelberg"}],"id":{"doi":["10.11588/heidok.00025489"],"eki":["1665543167"],"uri":["urn:nbn:de:bsz:16-heidok-254893"]},"physDesc":[{"extent":"1 Online-Ressource (iv, 272 Seiten)","noteIll":"Illustrationen, Diagramme"}],"language":["eng"],"titleAlt":[{"title":"Inferenz und Analyse epigenetischer regulatorischer Netzwerktopologien basierend auf statistischen Lernmethoden in T-Helfer Zellen"}],"type":{"media":"Online-Ressource","bibl":"thesis"},"title":[{"title":"Statistical learning based inference and analysis of epigenetic regulatory network topologies in T-helper cells","title_sort":"Statistical learning based inference and analysis of epigenetic regulatory network topologies in T-helper cells"}],"person":[{"given":"Christoph","role":"aut","family":"Kommer","display":"Kommer, Christoph"},{"display":"Höfer, Thomas","family":"Höfer","given":"Thomas","role":"dgs"}]} 
SRT |a KOMMERCHRISTATISTICA3120