Statistical learning based inference and analysis of epigenetic regulatory network topologies in T-helper cells
Abstract: The reliable statistical inference of epigenetic regulatory networks that govern mammalian cell fates is very challenging. In this thesis we study this question for the differentiation decisions of T-helper (Th) cells, which have recently been shown to adopt a continuum of differentiated s...
Saved in:
| Main Author: | |
|---|---|
| Format: | Book/Monograph Thesis |
| Language: | English |
| Published: |
Heidelberg
31 Okt 2018
|
| DOI: | 10.11588/heidok.00025489 |
| Subjects: | |
| Online Access: | Verlag, kostenfrei, Volltext: https://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-254893 Resolving-System, Volltext: http://dx.doi.org/10.11588/heidok.00025489 Verlag, kostenfrei, Volltext: http://www.ub.uni-heidelberg.de/archiv/25489 Langzeitarchivierung Nationalbibliothek, Volltext: http://d-nb.info/1183681623/34 Resolving-System, Volltext: https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-254893 Resolving-System, Unbekannt: https://doi.org/10.11588/heidok.00025489 |
| Author Notes: | put forward by M. Sc. Christoph Kommer ; referees: Prof. Dr. Thomas Höfer, Prof. Dr. Ursula Kummer |
Search Result 1