Statistical learning based inference and analysis of epigenetic regulatory network topologies in T-helper cells

Abstract: The reliable statistical inference of epigenetic regulatory networks that govern mammalian cell fates is very challenging. In this thesis we study this question for the differentiation decisions of T-helper (Th) cells, which have recently been shown to adopt a continuum of differentiated s...

Full description

Saved in:
Bibliographic Details
Main Author: Kommer, Christoph (Author)
Format: Book/Monograph Thesis
Language:English
Published: Heidelberg 31 Okt 2018
DOI:10.11588/heidok.00025489
Subjects:
Online Access:Verlag, kostenfrei, Volltext: https://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-254893
Resolving-System, Volltext: http://dx.doi.org/10.11588/heidok.00025489
Verlag, kostenfrei, Volltext: http://www.ub.uni-heidelberg.de/archiv/25489
Langzeitarchivierung Nationalbibliothek, Volltext: http://d-nb.info/1183681623/34
Resolving-System, Volltext: https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-254893
Resolving-System, Unbekannt: https://doi.org/10.11588/heidok.00025489
Get full text
Author Notes:put forward by M. Sc. Christoph Kommer ; referees: Prof. Dr. Thomas Höfer, Prof. Dr. Ursula Kummer
Search Result 1

Statistical learning based inference and analysis of epigenetic regulatory network topologies in T-helper cells by Kommer, Christoph (Author)

2018

Get full text
Book/Monograph Thesis