Reconstructing parton distribution functions from Ioffe time data: from Bayesian methods to neural networks

The computation of the parton distribution functions (PDF) or distribution amplitudes (DA) of hadrons from first principles lattice QCD constitutes a central open problem in high energy nuclear physics. In this study, we present and evaluate the efficiency of several numerical methods, well establis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karpie, Joseph (VerfasserIn) , Zafeiropoulos, Savvas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: April 5, 2019
In: Journal of high energy physics
Year: 2019, Heft: 4
ISSN:1029-8479
DOI:10.1007/JHEP04(2019)057
Online-Zugang:Verlag, Volltext: https://doi.org/10.1007/JHEP04(2019)057
Volltext
Verfasserangaben:Joseph Karpie, Kostas Orginos, Alexander Rothkopf and Savvas Zafeiropoulos

MARC

LEADER 00000caa a2200000 c 4500
001 1666927171
003 DE-627
005 20220816165818.0
007 cr uuu---uuuuu
008 190606s2019 xx |||||o 00| ||eng c
024 7 |a 10.1007/JHEP04(2019)057  |2 doi 
035 |a (DE-627)1666927171 
035 |a (DE-599)KXP1666927171 
035 |a (OCoLC)1341227613 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Karpie, Joseph  |e VerfasserIn  |0 (DE-588)1187974498  |0 (DE-627)1666928291  |4 aut 
245 1 0 |a Reconstructing parton distribution functions from Ioffe time data  |b from Bayesian methods to neural networks  |c Joseph Karpie, Kostas Orginos, Alexander Rothkopf and Savvas Zafeiropoulos 
264 1 |c April 5, 2019 
300 |a 43 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 06.06.2019 
520 |a The computation of the parton distribution functions (PDF) or distribution amplitudes (DA) of hadrons from first principles lattice QCD constitutes a central open problem in high energy nuclear physics. In this study, we present and evaluate the efficiency of several numerical methods, well established in the study of inverse problems, to reconstruct the full x-dependence of PDFs. Our starting point are the so called Ioffe time PDFs, which are accessible from Euclidean time simulations in conjunction with a matching procedure. Using realistic mock data tests, we find that the ill-posed incomplete Fourier transform underlying the reconstruction requires careful regularization, for which both the Bayesian approach as well as neural networks are efficient and flexible choices. 
650 4 |a Lattice QCD 
650 4 |a Lattice Quantum Field Theory 
700 1 |a Zafeiropoulos, Savvas  |e VerfasserIn  |0 (DE-588)1182055885  |0 (DE-627)1662553145  |4 aut 
773 0 8 |i Enthalten in  |t Journal of high energy physics  |d Berlin : Springer, 1997  |g (2019,4) Artikel-Nummer 57, 43 Seiten  |h Online-Ressource  |w (DE-627)320910571  |w (DE-600)2027350-2  |w (DE-576)095428305  |x 1029-8479  |7 nnas  |a Reconstructing parton distribution functions from Ioffe time data from Bayesian methods to neural networks 
773 1 8 |g year:2019  |g number:4  |g extent:43  |a Reconstructing parton distribution functions from Ioffe time data from Bayesian methods to neural networks 
856 4 0 |u https://doi.org/10.1007/JHEP04(2019)057  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://doi.org/10.1007/JHEP04(2019)057  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190606 
993 |a Article 
994 |a 2019 
998 |g 1182055885  |a Zafeiropoulos, Savvas  |m 1182055885:Zafeiropoulos, Savvas  |d 130000  |d 130300  |e 130000PZ1182055885  |e 130300PZ1182055885  |k 0/130000/  |k 1/130000/130300/  |p 4  |y j 
999 |a KXP-PPN1666927171  |e 3481817509 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"given":"Joseph","family":"Karpie","role":"aut","display":"Karpie, Joseph","roleDisplay":"VerfasserIn"},{"family":"Zafeiropoulos","given":"Savvas","roleDisplay":"VerfasserIn","display":"Zafeiropoulos, Savvas","role":"aut"}],"title":[{"subtitle":"from Bayesian methods to neural networks","title":"Reconstructing parton distribution functions from Ioffe time data","title_sort":"Reconstructing parton distribution functions from Ioffe time data"}],"language":["eng"],"recId":"1666927171","note":["Gesehen am 06.06.2019"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"name":{"displayForm":["Joseph Karpie, Kostas Orginos, Alexander Rothkopf and Savvas Zafeiropoulos"]},"id":{"eki":["1666927171"],"doi":["10.1007/JHEP04(2019)057"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"April 5, 2019"}],"relHost":[{"disp":"Reconstructing parton distribution functions from Ioffe time data from Bayesian methods to neural networksJournal of high energy physics","note":["Gesehen am 02.12.20"],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"320910571","corporate":[{"role":"isb","display":"Institute of Physics","roleDisplay":"Herausgebendes Organ"}],"language":["eng"],"pubHistory":["Nachgewiesen 1997 -"],"titleAlt":[{"title":"JHEP"}],"part":{"text":"(2019,4) Artikel-Nummer 57, 43 Seiten","extent":"43","year":"2019","issue":"4"},"title":[{"title":"Journal of high energy physics","subtitle":"JHEP ; a refereed journal written, run, and distributed by electronic means","title_sort":"Journal of high energy physics"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Berlin ; Heidelberg ; [Trieste] ; Bristol","publisher":"Springer ; SISSA ; IOP Publ.","dateIssuedKey":"1997","dateIssuedDisp":"1997-"}],"id":{"issn":["1029-8479"],"zdb":["2027350-2"],"eki":["320910571"]}}],"physDesc":[{"extent":"43 S."}]} 
SRT |a KARPIEJOSERECONSTRUC5201