Reconstructing parton distribution functions from Ioffe time data: from Bayesian methods to neural networks
The computation of the parton distribution functions (PDF) or distribution amplitudes (DA) of hadrons from first principles lattice QCD constitutes a central open problem in high energy nuclear physics. In this study, we present and evaluate the efficiency of several numerical methods, well establis...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
April 5, 2019
|
| In: |
Journal of high energy physics
Year: 2019, Heft: 4 |
| ISSN: | 1029-8479 |
| DOI: | 10.1007/JHEP04(2019)057 |
| Online-Zugang: | Verlag, Volltext: https://doi.org/10.1007/JHEP04(2019)057 |
| Verfasserangaben: | Joseph Karpie, Kostas Orginos, Alexander Rothkopf and Savvas Zafeiropoulos |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1666927171 | ||
| 003 | DE-627 | ||
| 005 | 20220816165818.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190606s2019 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/JHEP04(2019)057 |2 doi | |
| 035 | |a (DE-627)1666927171 | ||
| 035 | |a (DE-599)KXP1666927171 | ||
| 035 | |a (OCoLC)1341227613 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Karpie, Joseph |e VerfasserIn |0 (DE-588)1187974498 |0 (DE-627)1666928291 |4 aut | |
| 245 | 1 | 0 | |a Reconstructing parton distribution functions from Ioffe time data |b from Bayesian methods to neural networks |c Joseph Karpie, Kostas Orginos, Alexander Rothkopf and Savvas Zafeiropoulos |
| 264 | 1 | |c April 5, 2019 | |
| 300 | |a 43 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 06.06.2019 | ||
| 520 | |a The computation of the parton distribution functions (PDF) or distribution amplitudes (DA) of hadrons from first principles lattice QCD constitutes a central open problem in high energy nuclear physics. In this study, we present and evaluate the efficiency of several numerical methods, well established in the study of inverse problems, to reconstruct the full x-dependence of PDFs. Our starting point are the so called Ioffe time PDFs, which are accessible from Euclidean time simulations in conjunction with a matching procedure. Using realistic mock data tests, we find that the ill-posed incomplete Fourier transform underlying the reconstruction requires careful regularization, for which both the Bayesian approach as well as neural networks are efficient and flexible choices. | ||
| 650 | 4 | |a Lattice QCD | |
| 650 | 4 | |a Lattice Quantum Field Theory | |
| 700 | 1 | |a Zafeiropoulos, Savvas |e VerfasserIn |0 (DE-588)1182055885 |0 (DE-627)1662553145 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of high energy physics |d Berlin : Springer, 1997 |g (2019,4) Artikel-Nummer 57, 43 Seiten |h Online-Ressource |w (DE-627)320910571 |w (DE-600)2027350-2 |w (DE-576)095428305 |x 1029-8479 |7 nnas |a Reconstructing parton distribution functions from Ioffe time data from Bayesian methods to neural networks |
| 773 | 1 | 8 | |g year:2019 |g number:4 |g extent:43 |a Reconstructing parton distribution functions from Ioffe time data from Bayesian methods to neural networks |
| 856 | 4 | 0 | |u https://doi.org/10.1007/JHEP04(2019)057 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://doi.org/10.1007/JHEP04(2019)057 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20190606 | ||
| 993 | |a Article | ||
| 994 | |a 2019 | ||
| 998 | |g 1182055885 |a Zafeiropoulos, Savvas |m 1182055885:Zafeiropoulos, Savvas |d 130000 |d 130300 |e 130000PZ1182055885 |e 130300PZ1182055885 |k 0/130000/ |k 1/130000/130300/ |p 4 |y j | ||
| 999 | |a KXP-PPN1666927171 |e 3481817509 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"person":[{"given":"Joseph","family":"Karpie","role":"aut","display":"Karpie, Joseph","roleDisplay":"VerfasserIn"},{"family":"Zafeiropoulos","given":"Savvas","roleDisplay":"VerfasserIn","display":"Zafeiropoulos, Savvas","role":"aut"}],"title":[{"subtitle":"from Bayesian methods to neural networks","title":"Reconstructing parton distribution functions from Ioffe time data","title_sort":"Reconstructing parton distribution functions from Ioffe time data"}],"language":["eng"],"recId":"1666927171","note":["Gesehen am 06.06.2019"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"name":{"displayForm":["Joseph Karpie, Kostas Orginos, Alexander Rothkopf and Savvas Zafeiropoulos"]},"id":{"eki":["1666927171"],"doi":["10.1007/JHEP04(2019)057"]},"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"April 5, 2019"}],"relHost":[{"disp":"Reconstructing parton distribution functions from Ioffe time data from Bayesian methods to neural networksJournal of high energy physics","note":["Gesehen am 02.12.20"],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"320910571","corporate":[{"role":"isb","display":"Institute of Physics","roleDisplay":"Herausgebendes Organ"}],"language":["eng"],"pubHistory":["Nachgewiesen 1997 -"],"titleAlt":[{"title":"JHEP"}],"part":{"text":"(2019,4) Artikel-Nummer 57, 43 Seiten","extent":"43","year":"2019","issue":"4"},"title":[{"title":"Journal of high energy physics","subtitle":"JHEP ; a refereed journal written, run, and distributed by electronic means","title_sort":"Journal of high energy physics"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Berlin ; Heidelberg ; [Trieste] ; Bristol","publisher":"Springer ; SISSA ; IOP Publ.","dateIssuedKey":"1997","dateIssuedDisp":"1997-"}],"id":{"issn":["1029-8479"],"zdb":["2027350-2"],"eki":["320910571"]}}],"physDesc":[{"extent":"43 S."}]} | ||
| SRT | |a KARPIEJOSERECONSTRUC5201 | ||