Deep learning methods for likelihood-free inference: approximating the posterior distribution with convolutional neural networks
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Buch/Monographie Hochschulschrift |
| Sprache: | Englisch |
| Veröffentlicht: |
Heidelberg
2019
|
| DOI: | 10.11588/heidok.00026383 |
| Schlagworte: | |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-263839 Verlag, kostenfrei, Volltext: http://dx.doi.org/10.11588/heidok.00026383 Verlag, kostenfrei, Volltext: http://www.ub.uni-heidelberg.de/archiv/26383 Langzeitarchivierung Nationalbibliothek, Volltext: http://d-nb.info/1185891986/34 Resolving-System, Volltext: https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-263839 Resolving-System, Unbekannt: https://doi.org/10.11588/heidok.00026383 |
| Verfasserangaben: | presented by Ulf Kai Mertens, M. Sc. |
MARC
| LEADER | 00000cam a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1666942723 | ||
| 003 | DE-627 | ||
| 005 | 20230426071820.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 190606s2019 gw |||||om 00| ||eng c | ||
| 016 | 7 | |a 1185891986 |2 DE-101 | |
| 024 | 7 | |a urn:nbn:de:bsz:16-heidok-263839 |2 urn | |
| 024 | 7 | |a 10.11588/heidok.00026383 |2 doi | |
| 035 | |a (DE-627)1666942723 | ||
| 035 | |a (DE-599)KXP1666942723 | ||
| 035 | |a (OCoLC)1129737055 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 044 | |c XA-DE-BW | ||
| 082 | 0 | |a 006.31 |q DE-101 | |
| 082 | 0 | 4 | |a 570 |q DE-101 |
| 084 | |a 11 |2 sdnb | ||
| 084 | |a 32 |2 sdnb | ||
| 084 | |a 54.72 |2 bkl | ||
| 100 | 1 | |a Mertens, Ulf K. |d 1989- |e VerfasserIn |0 (DE-588)1147723338 |0 (DE-627)1006745602 |0 (DE-576)414122860 |4 aut | |
| 245 | 1 | 0 | |a Deep learning methods for likelihood-free inference |b approximating the posterior distribution with convolutional neural networks |c presented by Ulf Kai Mertens, M. Sc. |
| 264 | 1 | |a Heidelberg |c 2019 | |
| 300 | |a 1 Online-Ressource (128 Seiten) | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 502 | |b Dissertation |c Heidelberg University |d 2019 | ||
| 655 | 7 | |a Hochschulschrift |0 (DE-588)4113937-9 |0 (DE-627)105825778 |0 (DE-576)209480580 |2 gnd-content | |
| 689 | 0 | 0 | |d s |0 (DE-588)1135597375 |0 (DE-627)890512922 |0 (DE-576)489847412 |a Deep Learning |2 gnd |
| 689 | 0 | |5 (DE-627) | |
| 751 | |a Heidelberg |0 (DE-588)4023996-2 |0 (DE-627)106300814 |0 (DE-576)208952578 |4 uvp | ||
| 776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Mertens, Ulf K., 1989 - |t Deep learning methods for likelihood-free inference |d Heidelberg, 2019 |h 1 Band (verschiedene Seitenzählungen) |w (DE-627)1670863972 |
| 856 | 4 | 0 | |u https://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-263839 |q application/pdf |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u http://dx.doi.org/10.11588/heidok.00026383 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u http://www.ub.uni-heidelberg.de/archiv/26383 |q application/pdf |x Verlag |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u http://d-nb.info/1185891986/34 |v 2019-08-23 |x Langzeitarchivierung Nationalbibliothek |3 Volltext |
| 856 | 4 | 0 | |u https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-263839 |v 2019-08-23 |x Resolving-System |3 Volltext |
| 856 | 4 | 2 | |u https://doi.org/10.11588/heidok.00026383 |v 2019-08-23 |x Resolving-System |3 Unbekannt |
| 912 | |a GBV-ODiss | ||
| 936 | b | k | |a 54.72 |j Künstliche Intelligenz |0 (DE-627)10641240X |
| 951 | |a BO | ||
| 990 | |a Deep Learning | ||
| 992 | |a 20190606 | ||
| 993 | |a Thesis | ||
| 994 | |a 2019 | ||
| 998 | |g 1147723338 |a Mertens, Ulf K. |m 1147723338:Mertens, Ulf K. |d 100000 |d 100001 |e 100000PM1147723338 |e 100001PM1147723338 |k 0/100000/ |k 1/100000/100001/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1666942723 |e 3481863063 | ||
| BIB | |a Y | ||
| JSO | |a {"recId":"1666942723","language":["eng"],"type":{"bibl":"thesis","media":"Online-Ressource"},"physDesc":[{"extent":"1 Online-Ressource (128 Seiten)"}],"name":{"displayForm":["presented by Ulf Kai Mertens, M. Sc."]},"person":[{"given":"Ulf K.","family":"Mertens","role":"aut","roleDisplay":"VerfasserIn","display":"Mertens, Ulf K."}],"noteThesis":["Dissertation. - Heidelberg University. - 2019"],"id":{"doi":["10.11588/heidok.00026383"],"eki":["1666942723"],"uri":["urn:nbn:de:bsz:16-heidok-263839"]},"title":[{"title":"Deep learning methods for likelihood-free inference","subtitle":"approximating the posterior distribution with convolutional neural networks","title_sort":"Deep learning methods for likelihood-free inference"}],"origin":[{"dateIssuedKey":"2019","dateIssuedDisp":"2019","publisherPlace":"Heidelberg"}]} | ||
| SRT | |a MERTENSULFDEEPLEARNI2019 | ||