An LDA-based approach for real-time simultaneous classification of movements using surface electromyography

Myoelectric-based decoding strategies offer significant advantages in the areas of human-machine interactions because they are intuitive and require less cognitive effort from the users. However, a general drawback in using machine learning techniques for classification is that the decoder is limite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Antuvan, Chris Wilson (VerfasserIn) , Masia, Lorenzo (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: [March 2019]
In: IEEE transactions on neural systems and rehabilitation engineering
Year: 2019, Jahrgang: 27, Heft: 3, Pages: 552-561
ISSN:1558-0210
DOI:10.1109/TNSRE.2018.2873839
Online-Zugang:Resolving-System, Volltext: https://doi.org/10.1109/TNSRE.2018.2873839
Volltext
Verfasserangaben:Chris Wilson Antuvan, student member, IEEE , and Lorenzo Masia, member, IEEE

MARC

LEADER 00000caa a2200000 c 4500
001 1667287354
003 DE-627
005 20220816170417.0
007 cr uuu---uuuuu
008 190612s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TNSRE.2018.2873839  |2 doi 
035 |a (DE-627)1667287354 
035 |a (DE-599)KXP1667287354 
035 |a (OCoLC)1341227704 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Antuvan, Chris Wilson  |e VerfasserIn  |0 (DE-588)1188345206  |0 (DE-627)166728780X  |4 aut 
245 1 3 |a An LDA-based approach for real-time simultaneous classification of movements using surface electromyography  |c Chris Wilson Antuvan, student member, IEEE , and Lorenzo Masia, member, IEEE 
264 1 |c [March 2019] 
300 |b Illustrationen 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.06.2019 
520 |a Myoelectric-based decoding strategies offer significant advantages in the areas of human-machine interactions because they are intuitive and require less cognitive effort from the users. However, a general drawback in using machine learning techniques for classification is that the decoder is limited to predicting only one movement at any instant and hence restricted to performing the motion in a sequential manner, whereas human motor control strategy involves simultaneous actuation of multiple degrees of freedom (DOFs) and is considered to be a natural and efficient way of performing tasks. Simultaneous decoding in the context of myoelectric-based movement control is a challenge that is being addressed recently and is increasingly popular. In this paper, we propose a novel classification strategy capable of decoding both the individual and combined movements, by collecting data from only the individual motions. Additionally, we exploit low-dimensional representation of the myoelectric signals using a supervised decomposition algorithm called linear discriminant analysis, to simplify the complexity of control and reduce computational cost. The performance of the decoding algorithm is tested in an online context for the two DOFs task comprising the hand and wrist movements. Results indicate an overall classification accuracy of 88.02% for both the individual and combined motions. 
650 4 |a Calibration 
650 4 |a classification accuracy 
650 4 |a classification strategy 
650 4 |a combined motions 
650 4 |a combined movements 
650 4 |a Complexity theory 
650 4 |a decoder 
650 4 |a decoding 
650 4 |a Decoding 
650 4 |a decoding algorithm 
650 4 |a decoding strategies 
650 4 |a DOF task 
650 4 |a electromyography 
650 4 |a Electromyography 
650 4 |a hand movements 
650 4 |a human motor control strategy 
650 4 |a human-machine interactions 
650 4 |a individual motions 
650 4 |a individual movements 
650 4 |a learning (artificial intelligence) 
650 4 |a linear discriminant analysis 
650 4 |a low-dimensional representation 
650 4 |a medical signal processing 
650 4 |a Muscles 
650 4 |a myoelectric signals 
650 4 |a myoelectric-based movement control 
650 4 |a real-time myoelectric control 
650 4 |a real-time simultaneous classification 
650 4 |a Real-time systems 
650 4 |a signal classification 
650 4 |a simultaneous decoding 
650 4 |a simultaneous motion decoding 
650 4 |a supervised decomposition algorithm 
650 4 |a surface electromyography 
650 4 |a Wrist 
650 4 |a wrist movements 
700 1 |a Masia, Lorenzo  |e VerfasserIn  |0 (DE-588)1186660864  |0 (DE-627)1665956569  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on neural systems and rehabilitation engineering  |d New York, NY : IEEE, 2001  |g 27(2019), 3, Seite 552-561  |h Online-Ressource  |w (DE-627)320614026  |w (DE-600)2021739-0  |w (DE-576)094402019  |x 1558-0210  |7 nnas 
773 1 8 |g volume:27  |g year:2019  |g number:3  |g pages:552-561  |g extent:10  |a An LDA-based approach for real-time simultaneous classification of movements using surface electromyography 
856 4 0 |u https://doi.org/10.1109/TNSRE.2018.2873839  |x Resolving-System  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20190612 
993 |a Article 
994 |a 2019 
998 |g 1186660864  |a Masia, Lorenzo  |m 1186660864:Masia, Lorenzo  |d 700000  |d 720000  |e 700000PM1186660864  |e 720000PM1186660864  |k 0/700000/  |k 1/700000/720000/  |p 2  |y j 
999 |a KXP-PPN1667287354  |e 3486205498 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1667287354","relHost":[{"disp":"Institute of Electrical and Electronics EngineersIEEE transactions on neural systems and rehabilitation engineering","origin":[{"publisher":"IEEE","dateIssuedKey":"2001","publisherPlace":"New York, NY","dateIssuedDisp":"2001-"}],"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["Volume 9, Nr. 1 (March 2001)-"],"title":[{"title":"IEEE transactions on neural systems and rehabilitation engineering","subtitle":"a publication of the IEEE Engineering in Medicine and Biology Society","title_sort":"IEEE transactions on neural systems and rehabilitation engineering"}],"recId":"320614026","part":{"volume":"27","extent":"10","issue":"3","year":"2019","text":"27(2019), 3, Seite 552-561","pages":"552-561"},"corporate":[{"roleDisplay":"VerfasserIn","role":"aut","display":"Institute of Electrical and Electronics Engineers"},{"display":"IEEE Engineering in Medicine and Biology Society","role":"isb","roleDisplay":"Herausgebendes Organ"}],"id":{"issn":["1558-0210"],"zdb":["2021739-0"],"eki":["320614026"]},"note":["Gesehen am 18.08.22"],"titleAlt":[{"title":"Transactions on neural systems and rehabilitation engineering"}]}],"title":[{"title_sort":"LDA-based approach for real-time simultaneous classification of movements using surface electromyography","title":"An LDA-based approach for real-time simultaneous classification of movements using surface electromyography"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"physDesc":[{"noteIll":"Illustrationen","extent":"10 S."}],"origin":[{"dateIssuedDisp":"[March 2019]","dateIssuedKey":"2019"}],"note":["Gesehen am 12.06.2019"],"name":{"displayForm":["Chris Wilson Antuvan, student member, IEEE , and Lorenzo Masia, member, IEEE"]},"id":{"eki":["1667287354"],"doi":["10.1109/TNSRE.2018.2873839"]},"person":[{"display":"Antuvan, Chris Wilson","roleDisplay":"VerfasserIn","role":"aut","given":"Chris Wilson","family":"Antuvan"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Masia, Lorenzo","given":"Lorenzo","family":"Masia"}]} 
SRT |a ANTUVANCHRLDABASEDAP2019